
Partition Based Differential Testing for Finding
Embedded Code Generation Bugs in Simulink

He Jianga, Hongyi Chengb, Shikai Guob, Xiaochen Lia
aSchool of Software, Dalian University of Technology, Dalian, China

bSchool of Information Science and Technology, Dalian Maritime University, Dalian, China
jianghe@mail.dlut.edu.cn, chenghongyi@dlmu.edu.cn, shikai.guo@dlmu.edu.cn, xiaochen.li@dlut.edu.cn

Abstract—Engineers frequently generate embedded code from
Simulink models for control applications. However, target ap-
plications using the code could behave unexpectedly, due to the
bugs in code generation. In this study, we propose MOPART,
the first model partition based differential testing method for
code generation testing in Simulink. MOPART uses multiple-
way network partitioning to generate diverse bug-triggering
Simulink models to thoroughly exercise the code generation
process. MOPART then finds bugs by analyzing the outputs of
these Simulink models with differential testing. Experiments show
that MOPART significantly outperforms existing approaches,
which finds 11 confirmed code generation bugs in only two weeks.

Index Terms—Code generation, Simulink coder, differential
testing, Simulink

I. INTRODUCTION

Simulink is a fundamental platform for engineers to design
and analyze models for control applications [1]. When the
designed Simulink model satisfies engineers’ requirements,
engineers can transform the Simulink model into embedded
code (e.g., C source code), which can get deployed in safety-
critical applications such as aerospace and healthcare. How-
ever, the code generation process of Simulink could have
bugs, due to the wrong or improper implementation of this
process. These bugs may inject unexpected behaviors to target
applications via the generated code, causing unexpectedly
catastrophe consequences for safety-critical applications.

An example of this type of bug is shown in Fig. 1. We
have two Simulink models A and B. Simulink model B is
generated by setting blocks in the red box in Simulink model
A as a subsystem. In practice, after designing a Simulink
model, engineers usually refactor the Simulink model to
put blocks implementing similar functions as subsystems.
This kind of refactoring improves the maintainability of the
Simulink model; it does not change its functionality. Hence,
the two Simulink models have the same simulation results in
the Normal mode simulation1. However, when we execute the
generated code, we get different results. This bug has been
confirmed by Simulink engineers (with bug ID#05794231).
The cause of this bug is that during code generation, Simulink
transforms the Sine Wave block in blue in Fig. 1(B) into
the ‘sine’ method in the Standard C Library. The ‘sine’
method works normally with inputs between −π and π;

1When designing Simulink models, engineers usually execute them in
the simulation mode with Simulink language specifications. After designing,
engineers generate embedded code based on target language specifications.

(a) Simulink model A

(b) Simulink model B which is equivalent with A

Fig. 1: Example of a code generation bugs

but for extremely large inputs (e.g., 1.74E+17), this method
transforms the input value with the ‘eps’ method, and takes
the transformed value as input, leading to a different output. If
such generated code is deployed on safety-critical applications,
in extreme cases, we could get unexpected and weird behaviors
on the applications. Even worse, engineers may not be aware
of this difference, leading potential safety hazard.

Therefore, finding bugs in Simulink code generation is
important. A typical approach to find such bugs is Software-in-
the-Loop (SIL) simulation2. Given a Simulink model (which
are usually randomly generated), we generate embedded code
from the Simulink model. SIL encapsulates the generated
source code as a block using the s-function block in Simulink.

2SIL and PIL Simulations. https://www.mathworks.com/help/ecoder/ug/
about-sil-and-pil-simulations.html

It integrates this block into a Simulink model. SIL executes
the original Simulink model and the integrated Simulink
model with certain inputs, and compares their outputs to find
unexpected outputs after code generation.

However, existing approaches may not find code generation
bugs effectively due to the challenges in constructing bug-
triggering Simulink models and deciding test oracles. On
the one hand, Simulink is commercial software implemented
by professional engineers. A randomly constructed Simulink
model may not trigger any Simulink bugs. It is a challenge
to construct diverse and complex Simulink models that can
trigger code generation bugs. On the other hand, when gen-
erating code from Simulink models, the test oracle is hard
to design (i.e., the expected code to generate). It may be not
sufficiently to simply compare the outputs before and after
code generation. Hence, it is a challenge to decide test oracles
for testing the generated code.

In this paper, we propose MOPART, a model partition
based differential testing method for code generation testing.
MOPART aims to generate diverse and complex Simulink
models to exercise the code generation process thoroughly for
finding bugs. Given a randomly generated Simulink model,
MOPART uses multiple-way network partitioning to partition
blocks in the Simulink model into groups. MOPART generates
variant Simulink models by randomly setting blocks in differ-
ent groups in the seed Simulink model as subsystems. Since
these subsystems increase the complexity of Simulink models,
they may trigger more bugs during code generation. To address
the test oracle challenge, instead of analyzing the outputs of a
Simulink model before and after code generation, MOPART
takes the output of the seed Simulink model as oracle, and
compares this output with the variant Simulink models through
differential testing. Since subsystems should not affect the
functionality of Simulink models, the seed Simulink model
and its variants are equivalent. If MOPART finds output
inconsistency of generated code from these Simulink models,
a code generation bugs could be triggered.

Experiments show that, within the same testing period,
MOPART significantly outperforms existing approaches in
finding output inconsistency of the generated code in Simulink.
MOPART is effective in finding bugs, which finds 11 code
generation bugs in the latest Simulink version (i.e, Simulink
2022a) in only two weeks. Simulink may improperly deal
with certain C language specifications, subsystems, and special
input values during code generation, possibly leading unex-
pected behaviors of target applications.

The main contributions of this work are:

• To the best of our knowledge, MOPART is the first study
to systematically find code generation bugs in Simulink
with partition-based differential testing.

• Extensive experiments are conducted to assess the bug-
finding capability of MOPART. MOPART significantly
outperforms existing approaches.

• We release MOPART as a replication package for code
generation testing [2].

Fig. 2: The process of code generation in Simulink

II. RELATED WORK

Our work is related to Simulink testing. Since Simulink
is widely used for designing embedded systems [1], the
correctness of Simulink is important for design automation.

Most of the work find Simulink bugs using randomly gen-
erated Simulink models. If Simulink crashes when executing a
model, a bug could be triggered. Chowdhury et al. [3] propose
CyFuzz. CyFuzz randomly generates an initial Simulink model
and iteratively fixes its grammar errors. Another approach is
SLforge [4], which uses the language specification of Simulink
to randomly generate Simulink models. In addition, some
learning based approaches are proposed [5], [6] to learn
the relationship of block connections with deep learning or
transfer learning for Simulink model generation. Among these
approaches, SLfroge is the state-of-the-art Simulink model
generator. However, a randomly generated Simulink model
may not trigger Simulink bugs effectively.

Another line of approaches for Simulink testing is based
on differential testing. They systematically mutate a seed
Simulink model as long as its semantics remain equivalent
under a given input [7]. The seed Simulink model and its
equivalent variants are used to find Simulink bugs if the com-
pilation of the two models produces different results. However,
these approaches only focus on testing the compilation system
of Simulink. No source code are generated during the testing.

Different from existing studies, we aim to find code gener-
ation bugs in Simulink. We propose MOPART to thoroughly
test the code generation process. Although several approaches
aim to optimize embedded code generation of Simulink [1],
[8], to the best of our knowledge, this is the first approach to
systematically find code generation bugs.

III. BACKGROUND OF CODE GENERATION IN SIMULINK

Simulink is widely used in an industrial context for engi-
neers to design, simulate, and generate embedded code for
control applications [9]. Simulink provides a block diagram
environment for model-based design with Simulink models.
As shown on the left top corner of Fig. 1, a Simulink model
is a set of blocks that are connected by signals specifying
the flow of data. Each block receives data from its input
ports, performs some operations, and passes the results to its
subsequent blocks through the output ports and connection
lines. A block in Simulink has properties such as block type
(e.g., a “If ” block) and datatype (e.g., double, unit32). Each
block can have child blocks to form a hierarchical subsystem
structure (via Simulink’s Subsystem and Model Referencing).

To deploy the designed Simulink model on a target appli-
cation, Simulink has an important feature to generate embed-
ded code from Simulink models [1]. As shown in Fig. 2,
the component Simulink Coder automatically transforms a

Fig. 3: The overview of MOPART

Simulink model into a model.rtw file, which includes the
model-specific information required for code generation, such
as the target language (e.g., C/C++) and the code optimization
level. Simulink Coder can also specify the atomic unit of a
Simulink model. Simulink blocks related to an atomic unit
usually implement the same functionality, which are organized
in the same generated code file for reuse. This process only
modifies the structure of generated code. The functionality of
the generated code remains the same. Simulink Coder then
passes all the information to the Target Language Compiler
(TLC), which uses the transformed information in combination
with a set of included system target files and block target files
to generate the code. The generated code can be used for real-
time and nonreal-time applications.

IV. MOPART FRAMEWORK

To effectively find code generation bugs in Simulink, we
propose MOPART, a MOdel PARTition based differential
testing approach for code generation testing. The framework of
MOPART is illustrated in Fig. 3. MOPART consists of three
components: preprocessing, Simulink model generation, and
differential testing. The basic idea of MOPART is to generate
diverse and complex Simulink models to exercise the code
generation process thoroughly for bug finding. The input of
MOPART is a seed Simulink model, which can be gener-
ated automatically. MOPART preprocesses the seed Simulink
model to get its basic information (e.g., the number of blocks).
To generate diverse and complex Simulink models, MOPART
transforms the seed Simulink model as a hypergraph. In
Simulink model generation, MOPART performs model par-
titioning on the hypergraph. Each partition contains a set of
blocks that are strongly connected with each other. MOPART
randomly selects some partitions, and sets blocks in each
partition as a subsystem. The output of this step is a set of new
Simulink models with different subsystem structures. Since
these new Simulink models have more complex structures,
they may better trigger code generation bugs, thus addressing
the bug-triggering Simulink model construction challenge. To
address the test oracle challenge, MOPART conducts differ-
ential testing on these Simulink models. MOPART sets each
new subsystem as an atomic unit for code generation. Since
the only difference of these Simulink models is the structure
of the generated source code (i.e., blocks transformed as a
single source code file), these Simulink models are equivalent
to provide the same outputs. When the outputs of them are

Fig. 4: Hypergraph for the Simulink model in Fig. 1(a)

different under certain inputs, code generation bugs could be
triggered.

A. Preprocessing

In this study, we find code generation bugs by generating
new Simulink models. To this end, we analyze the structure
of the seed Simulink model. Since Simulink models are
block-diagrams, in the preprocessing MOPART transforms a
Simulink model as a graph to further analysis. Specifically,
given a seed Simulink model, MOPART first gets the basic
information of the model (such as the number of blocks and
connections, the type of blocks). Based on this information,
a hypergraph is constructed from the seed Simulink model.
where each vertex in the hypergraph represents a block in the
Simulink model, and the edges are the connections between
different blocks. In a hypergraph, an edge is a hyperedge,
which can connect more than two vertices. Since a signal
in a Simulink model can pass to more than one block
simultaneously, in the hypergraph, we use the hyperedge
to connect blocks which take the same signal as input or
output to reflect this characteristic. For example, Fig. 4 is the
hypergraph of the Simulink model in Fig. 1(A). We configure
the hyperedge to connect at most three blocks. Each circle in
the figure is a hyperedge. The hyperedge on the top connects
S 4 (Subsystem 4), URN (Uniform Rand Number), Recor 1
(Record 1) blocks. The output of this step is the hypergraph
representing the seed Simulink model.

B. Simulink Model Generation

This step generates new Simulink models from the seed
Simulink model. The intuition of Simulink model generation
is that blocks frequently connected with each other in a
Simulink model tend to implement similar functions of the
target application. By setting a group of blocks as a subsystem,
new Simulink models can be generated. Since we only modify
the structure of Simulink models, these Simulink models are
equivalent in terms of the functionality. However, by creating
subsystems, the complexity and the diversity of Simulink mod-
els could be improved. Such Simulink models can thoroughly
test the code generation process of Simulink, thus having a
higher chance to trigger code generation bugs.

Algorithm 1 Simulink Model Partition:
Input: A hypergraph H representing the seed Simulink model, the number

of partitions np

Output: The target partition of the seed Simulink model
1: P = startingPartition(H,np);
2: repeat
3: Information I , Cost C = initPartition(P);
4: New partition P = newPartition(P, np, I, C);
5: until there is no improvement in C.

Simulink model partition: In this study, we identify blocks
that can be put into a subsystem as a graph partition problem,
which aims to partition a graph into sub-graphs based on
a cost function. We partition the hypergraph representing
the seed Simulink model with the Fiduccia-Mattheyses (FM)
algorithm [10], a classical hypergraph partition algorithm.

The main process of Simulink model partition is presented
in Algorithm 1. The inputs of this algorithm are the hypergraph
representing the seed Simulink model and a parameter np

indicating the number of partitions to be created. The output
is the target partition of the seed Simulink model. The basic
assumption of FM algorithm is that it is better to put all blocks
in the same hyperedge to the same partition.

MOPART first randomly creates np partitions, and puts
each block into a partition. Initially, the algorithm sets all the
blocks as unlocked, which can be moved from one partition
to another. MOPART then calls initPartition() the get the
statistical information of P . The information includes the
number of blocks and hyperedges in each partition, and the
cost of this partition. The cost is defined as the number of
hyperdedges across two partitions.

Based on this information, MOPART creates new partitions
for the Simulink model with the method newPartition() to
reduce the cost that can be obtained. The algorithm tries to
move every unlocked block from the current partition to a
different one; it computes the cost (i.e., the number of cross-
partition hyperedges) can be reduced for each move. The
algorithm chooses one of the best block to move, and generates
new partitions. Meanwhile, it marks this block as unlocked.

This process repeats until the cost cannot be reduced for all
new partitions. The red lines in Fig. 4 is an example to divide
a hypergraph into three partitions.

Partition selection: According to the partition of the seed
Simulink model, MOPART creates subsystems based on a
parameter ns (i.e., the number of new subsystems to be
created). MOPART randomly selects ns partitions in the
seed Simulink model. For each partition, MOPART creates a
subsystem by adding all the blocks in the partition to a parent
block. In this way, new Simulink models are generated. These
Simulink models implement the same functionality as the seed
Simulink models. We can repeat the partition selection process
to generate a set of Simulink models.

Simulink models generated by MOPART could introduce al-
gebraic loops, i.e., a circular data dependence path on which all
blocks are direct feed-through. In an algebraic loop, Simulink
would require the output of a block for computing the block’s
input [7]. Although Simulink can solve some algebraic loops,

it is computationally expensive. Since MOPART can efficiently
generate a large number of Simulink models by selecting
different partitions, MOPART directly discards new Simulink
models with algebraic loops in this study.

The outputs of this step are the new Simulink models
generated from the seed Simulink model.

C. Differential testing

We find code generation bugs in Simulink with differential
testing [11]. The intuition of differential testing is to run
different but equivalent test cases (e.g., Simulink models) in
the same environment. The equivalence means that although
two Simulink models are different in structure, they are
expected to get the same outputs with the same inputs and
configurations. If the outputs are different, a bug in executing
these Simulink models could be triggered.

In the literature, a possible way to find code generation bugs
is SIL simulation. As explained in Section I, SIL compares the
output of a randomly generated Simulink model before and
after code generation to find inconsistent outputs. However,
this approach may be ineffective, since it highly relies on the
quality of the randomly generated Simulink model.

In this study, MOPART uses the newly generated Simulink
models for differential testing. MOPART sets each newly
created subsystem in a new Simulink model as an atomic
unit with Simulink Coder. By creating atomic units, MOPART
increases the complexity and the frequency of data exchange
of Simulink models during code generation, which could
thoroughly test the code generation process. As we mentioned
in Section III, atomic units only modify the structure of the
generated source code. The new Simulink models are expected
to generate equivalent source code with the seed Simulink
model. Given an input, if the seed Simulink model and a new
Simulink model get the same outputs in the Normal simulation
mode of Simulink, but the generated code of them provide
different outputs, a code generation bugs in Simulink could
be triggered. In this study, two output values v1 and v2 are
different (or inconsistent) if the relative difference between
them (i.e., |v1−v2|

min{v1,v2}) is higher than a threshold. As suggested
by Simulink3, we set the threshold as 1E-3.

V. EVALUATION

In this section, three research questions (RQs) are investi-
gated to evaluate the effectiveness of MOPART. Specifically,
RQ1 compares the bug finding capability of MOPART with
existing approaches. RQ2 investigates the impact of the num-
ber of partitions on MOPART. RQ3 analyze whether MOPART
can find real code generation bugs in Simulink.

A. Evaluation Setup

Seed Simulink models: MOPART takes seed Simulink
models as inputs. In the evaluation, we use the widely
used Simulink model generator SLforge [4] to generate seed
Simulink models. SLforge supports to randomly generate

3https://www.mathworks.com/help/simulink/gui/relative-tolerance.html

TABLE I: Effectiveness of MOPART and baselines

Default Random MOPART

of seed Simulink models 1,248 1,248 888
of new Simulink models NA 288 538

success rate NA 0.23 0.61
of output inconsistency 60 21 102

Simulink models with most Simulink features. According to
the suggestion of SLforge and our computation resources, the
depth (i.e., hierarchy) of each seed Simulink model is at most
three. There are 100 blocks in each seed Simulink model.

Implementation: MOPART is implemented in MATLAB.
We set the number of partitions np to be created on the seed
Simulink model as 15. During Simulink model generation, for
each seed Simulink model, we randomly select one partition as
subsystem to generate a new Simulink model. Our evaluation
is run on a computer with Windows 10 64-bit system, an Intel
Core i9 CPU@2.10 GHz, and 120 GB of memory.

B. RQ1: Effectiveness of MOPART compared with baselines

We compare the effectiveness of MOPART with two base-
lines, i.e., Default and Random. Default finds code
generation bugs in Simulink only with seed Simulink models.
Default follows SIL to compare the outputs of the seed
Simulink model before and after code generation to find output
inconsistency. Random generates new Simulink models by
randomly selecting a subset of blocks in the seed Simulink
model as a subsystem, instead of conducting Simulink model
partitions. It then uses the same differential testing process as
that in Section IV-C to find output inconsistency.

We execute MOPART and the baselines on the latest
version of Simulink (i.e., Simulink R2022a) for two weeks,
which includes the time for generating seed Simulink models,
generating new Simulink models (if necessary), and testing.
We compare the number of executed seed Simulink models,
the success rate of generating new Simulink models, and the
number of output inconsistency detected.

As shown in Table I, MOPART, Default, and Random
process 888, 1,248, and 1,248 seed Simulink models in two
weeks, respectively. MOPART is relatively slow because it
requires additional time to conduct Simulink model partition.
Since both MOPART and Random generate new Simulink
models, we compare the success rate of this process. Random
generates a large number of invalid Simulink models, be-
cause randomly creating subsystems could break the language
specification of Simulink. In contrast, MOPART successfully
generates 538 new Simulink models. The success rate is
60.6%. Regarding the ability in finding code generation incon-
sistency, MOPART finds 102 inconsistencies between the seed
Simulink model and the new Simulink models, which number
is significantly higher than that of Default and Random.

We remark that in this RQ, some output inconsistencies
could be caused by the same reason. We take the number
of output inconsistency as a proxy of the effectiveness of an
approach in finding code generation bugs, since a high number
of output inconsistency usually indicates a higher probability

TABLE II: Results of MOPART with different np values

np=5 np=10 np=15 np=20

of seed Simulink models 807 679 802 628
of new Simulink models 254 635 797 625

success rate 0.31 0.94 0.99 0.99
of output inconsistency 23 56 83 53

in finding real code generation bugs. We do not manually
investigate the root causes of these output inconsistencies,
due to the high cost to manually analyze the causes. We
conduct a preliminary analysis on the output inconsistency in
Section V-D with Simulink engineers to show the effectiveness
of MOPART in finding real code generation bugs.

Conclusion: MOPART is effective in generating Simulink
models to trigger more code generation inconsistency com-
pared with baselines.

C. RQ2: Impact of the number of partitions

To assess the impact of the number of partitions np, we set
np from 5 to 20 with a step size of 5. We run MOPART with
each value of np, and compute the same metrics as those used
in RQ1.

As shown in Table II, np affects the efficiency and effec-
tiveness in finding output inconsistency. MOPART processes
between 628 and 807 seed Simulink models in two weeks
with different np values. The number of processed seed
Simulink models depends on the complexity of partitioning
a hypergraph into a certain number of partitions. When we
increase the number of partitions, the success rate in generat-
ing new Simulink models increases. For example, MOPART
successfully generates 254 new Simulink models from seed
Simulink models with 5 partitions with success rate of 0.31.
With 20 partitions, the success rate increases to 0.99. The
success rate affects the number of Simulink models used for
testing. When the success rate is low, MOPART spends most of
the time in generating valid Simulink models. Hence, it cannot
effectively find code generation bugs. When np = 5, MOPART
finds 23 output inconsistencies. In contrast, when generating
new Simulink models based on 15 partitions, MOPART finds
83 output inconsistencies. With a high number of output
inconsistency, MOPART has a higher probability to find real
code generation bugs. However, a very large number of np

may not be useful. For example, when np is 20, given a
seed Simulink model with 100 blocks, there are only 5 blocks
on average in each partition. When creating subsystems on a
small number of blocks, such simple subsystems may not be
effective in triggering different types of code generation bugs.
MOPART only finds 53 output inconsistencies.

Conclusion: The number of partitions affects the efficiency
and effectiveness in generating Simulink models and finding
output inconsistency. MOPART can find a high number of
output inconsistency with np = 15.

D. RQ3: Effectiveness in finding real code generation bugs

This RQ assesses the effectiveness of MOPART in finding
real code generation bugs in Simulink. We analyze the root

TABLE III: The detail of bugs found by MOPART

ID Title

1 05794231 Incorrect code generation
2 05807041 Code generation error caused by subsystem
3 05824672 SIL exception caused by Complex to Real-Img in subsystem
4 05824768 The Unary Minus module loses data after generating codes
5 05829052 The delay module in a multilayer subsystem raises an error
6 05842603 The MinMax Runing Resettable module lost data
7 05842655 Model code exception caused by bias module in subsystem
8 05842869 Repeating Sequence Interpolated Generating error signals
9 05862281 The Polyval module has abnormal data after code generation

10 05862510 Math function error handling in code generation
11 05864689 Trigonometric Function module incorrectly used

causes of the output inconsistency found by MOPART in RQ1.
For each inconsistency, we compare the failed assertion and
back-trace of this output inconsistency with previously found
output inconsistency to detect duplicate results. We consider
each non-duplicate results as a bug. For each non-duplicate
bug, we conduct Simulink model reduction. We remove blocks
in the corresponding Simulink model sequentially, and check
whether the bug can still be triggered after the block removal.
At last, a minimum set of blocks that can trigger this bug
is found. We report the reduced bug and the corresponding
Simulink model to Simulink engineers for confirmation.

Currently, 11 bugs have been confirmed by engineers (as
shown in Table III). These bugs are related to various blocks,
such as Delay, Bias, Polyval, and Math blocks. We release the
Simulink models that trigger bugs on GitHub [2].

First, the difference between language specifications of
Simulink and C/C++ can cause code generation bugs. An
example is bug ID#05794231 explained in Fig. 1.

Second, Simulink may improperly deal with subsystems
during code generation. In bug ID#05824768, MOPART gen-
erates a Simulink model with multiple-level of subsystems.
When transforming this Simulink model into C code, the data
passing through the Unary Minus block is lost, leading to
output inconsistency. A similar bug is bug ID#05824672.

Third, the generated code may not correctly compute spe-
cial input values. For bug ID#05842603, MOPART generates
a Simulink model containing a MinMax Runing Resettable
block. The input of this block is ‘NaN’. When transforming
this Simulink model to C code, Simulink did not provide
suitable mechanism to handle ‘NaN’ for this block, causing an
output inconsistency. However, there is no warning to alarm
users to check the special input value ‘NaN’.

RQ3 shows that MOPART is useful in finding code gen-
eration bugs automatically in practice. Although the auto-
matically generated Simulink models may be different from
those designed by engineers, these bugs are still threads to
real developing scenarios. We find some bugs are caused
by the difference between Simulink specification and C/C++
language specifications. However, there should be warning or
addition checks to help engineers aware of such differences
during the design phase, rather than injecting unexpected
behaviors to target applications.

Conclusion: MOPART can find real code generation bugs
related to various Simulink blocks. MOPART find 11 con-

firmed code generation bugs in Simulink.

VI. CONCLUSION

This study proposes MOPART to find code generation bugs
in Simulink, which is important to improve the reliability of
design automation. MOPART addresses two main challenges
in constructing bug-triggering Simulink models and deciding
test oracles. Given a seed Simulink model, MOPART partitions
the model based on its hypergraph. MOPART generates new
Simulink models by creating subsystems from different parti-
tions. At last, code generation bugs are found by executing the
seed Simulink model and new Simulink models with differ-
ential testing. Within only two weeks, we find 11 confirmed
bugs on the latest version of Simulink (i.e., Simulink R2022a).
Compared with baselines, MOPART can find significantly
more output inconsistencies between Simulink models.

ACKNOWLEDGMENT

This work was supported by the National Natural Sci-
ence Foundation of China (No.62032004, No.62202079),
the Dalian Excellent Young Project No.2022RY35, and the
Fundamental Research Funds for the Central Universities
No.DUT22RC(3)028.

REFERENCES

[1] Zhuo Su, Zehong Yu, Dongyan Wang, Yixiao Yang, Yu Jiang, Rui Wang,
Wanli Chang, and Jiaguang Sun. HCG: optimizing embedded code
generation of simulink with SIMD instruction synthesis. In Proc. of
ACM/IEEE Design Automation Conf. (DAC), pages 1033–1038, 2022.

[2] Code and bugs. https://github.com/Simulink-Testing-Code/C2C-Testing.
[3] Shafiul Azam Chowdhury, Taylor T. Johnson, and Christoph Csallner.

Cyfuzz: A differential testing framework for cyber-physical systems de-
velopment environments. In Cyber Physical Systems Design, Modeling,
and Evaluation, pages 46–60, Cham, 2017. Springer Int’l Publishing.

[4] Shafiul Azam Chowdhury, Soumik Mohian, Sidharth Mehra, Siddhant
Gawsane, Taylor T Johnson, and Christoph Csallner. Automatically
finding bugs in a commercial cyber-physical system development tool
chain with slforge. In Proc. of Int’l Conf. on Software Eng. (ICSE),
pages 981–992, 2018.

[5] Sohil Lal Shrestha, Shafiul Azam Chowdhury, and Christoph Csallner.
Deepfuzzsl: Generating models with deep learning to find bugs in the
simulink toolchain. In Workshop on Testing for Deep Learning and
Deep Learning for Testing (DeepTest), 2020.

[6] Sohil Lal Shrestha and Christoph Csallner. Slgpt: using transfer learning
to directly generate simulink model files and find bugs in the simulink
toolchain. In Evaluation and Assessment in Software Engineering, pages
260–265. 2021.

[7] Shafiul Azam Chowdhury, Sohil Lal Shrestha, Taylor T Johnson, and
Christoph Csallner. SLEMI: Equivalence modulo input (EMI) based
mutation of cps models for finding compiler bugs in simulink. In Proc.
of Int’l Conf. on Software Eng. (ICSE), pages 335–346. IEEE, 2020.

[8] Zhuo Su, Dongyan Wang, Yixiao Yang, Yu Jiang, Wanli Chang, Liming
Fang, Wen Li, and Jiaguang Sun. Code synthesis for dataflow-based
embedded software design. IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, 41(1):49–61, 2021.

[9] Nannan He, Philipp Rümmer, and Daniel Kroening. Test-case generation
for embedded simulink via formal concept analysis. In Proc. of Design
Automation Conf. (DAC), pages 224–229, 2011.

[10] Charles M Fiduccia and Robert M Mattheyses. A linear-time heuristic
for improving network partitions. In Papers on Twenty-five years of
electronic design automation, pages 241–247. 1988.

[11] Dongning Ma, Jianmin Guo, Yu Jiang, and Xun Jiao. Hdtest: Differential
fuzz testing of brain-inspired hyperdimensional computing. In Proc. of
Design Automation Conf. (DAC), pages 391–396. IEEE, 2021.

