
MAGCS: Multi-Agent Guided Configuration Search for
Optimization Fault Detection in Logic Synthesis

Peiyu Zoua, Xiaochen Lia,∗, Shikai Guob,∗, Weihong Sunc, Yuyao Xuc, He Jianga

aSchool of Software, Dalian University of Technology, Dalian, China
bSchool of Information Science and Technology, Dalian Maritime University, Dalian, China

cHi-Think Technology, Corp, Dalian, China
{zoupeiyu, xiaochen.li}@mail.dlut.edu.cn, shikai.guo@dlmu.edu.cn, {sunwh, yuyao.xu}@dhc.com.cn, jianghe@mail.dlut.edu.cn

Abstract—Logic synthesis tools are crucial to translate high-level de-
scriptions into optimized gate-level netlists. However, complex optimiza-
tion operations and operation configurations can cause synthesis faults.
To address this, we propose MAGCS, a fault detection method using
multi-agent reinforcement learning to dynamically refine optimization
sequences. MAGCS consists of three components: a test program selector
that applies feature extraction and cosine similarity to curate diverse test
programs, an optimization selector using the A2C algorithm to adaptively
adjust operations and configurations, and an optimization fault verifier
performing equivalence checks to pinpoint optimization-induced faults.
Using MAGCS, we identified 32 confirmed faults on Vivado and Yosys,
all of which are resolved. MAGCS received recognition from the Vivado
community for its significant contributions to tool improvement1.

Index Terms—Logic synthesis tools, optimization sequences, optimiza-
tion faults

I. INTRODUCTION

FPGA and ASIC are widely used in complex hardware system
design such as communications and aerospace [1, 2]. In this process,
logic synthesis is a critical step, which transforms high-level hardware
description languages (e.g., Verilog and VHDL) into optimized gate-
level netlists, to improve the performance and power efficiency of the
design [3]. As shown in Fig. 1, the logic synthesis process typically
consists of four main stages: Translation, Constrain, Logic Optimiza-
tion, and Mapping, each involving specific optimization operations
and configurations. By adjusting these operations and configurations,
developers can create customized optimization sequences to achieve
expression simplification, timing optimization, and efficient resource
allocation. However, certain optimization sequences may produce
unintended results or design errors, such as increased delays from
timing optimizations and the unintended removal of critical logic
during simplification. This risk is particularly concerning in safety-
critical domains.

Fig. 2 is an example of circuit design code for FPGA and
ASIC, which operates registers using the clock signal clk and
generates a 768-bit output signal y. The logic synthesis uses
Yosys with the sequence opt_clean -purge; opt_expr
-mux_bool; opt_dff -nodffe; opt_reduce -full;
opt_demorgan. In this sequence, opt_clean and opt_expr
are optimization operations, while purge and mux_bool are their
configurations. An error occurred when using the opt_demorgan
operation (Fault ID: 46102). As indicated in the log in Fig. 2(b), the
error is caused by a zero input signal to the $reduce_or unit, which
triggers a std::out_of_range exception. The error occurred
at line 11: reg79 <= (∼reg67[(4’h8):(3’h5)]); Due to
an incorrect signal connection, the input size was mistakenly set to

*Corresponding author (Xiaochen Li and Shikai Guo)
1https://support.xilinx.com/s/feed/0D54U00008Wfd2cSAB
2https://github.com/YosysHQ/Yosys/issues/4610

Fig. 1: Electronic Circuit Design - Logic Synthesis Flowchart.

zero, leading to synthesis failure. The Yosys community resolved
this issue through a fix (Pull Request ID: 46123), as illustrated
in Fig. 2(c). The fix involved modifying the opt demorgan.cc
optimization file. A conditional check was added at lines 43-44 to
prevent further processing when the input signal is zero.

To identify faults in logic synthesis tools, several testing meth-
ods have been proposed [4, 5, 6, 7]. These methods typically
rely on generators (e.g., Verismith and Vloghammer) to produce
large numbers of Verilog files, which are then used as input (aka,
test programs) to expose faults in synthesis tools. However, these
methods often overlook the complexity introduced by user-defined
optimization sequences. Methods like DeLoSo[8] address this by
using heuristics to explore specific combinations of operations and
parameter configurations that may trigger faults. However, DeLoSo
lacks real-time adaptation based on feedback, limiting its exploration
of broader optimization sequences. Additionally, DeLoSo relies on
code generators to produce a single batch of test programs, which
tend to exhibit similar structures within the batch, lacking sufficient
diversity to comprehensively expose faults. Based on the current
research landscape, fault detection in logic synthesis optimization
faces two main challenges:

Challenge 1: Insufficient diversity in test programs. Fault detection
relies on diverse test programs to thoroughly test the whole logic
synthesis process. Limited variation among test programs restricts
the ability of existing methods to reveal potential faults.

Challenge 2: Inadequate exploration of optimization sequences.
Logic synthesis tools offer numerous optimization operations; for
instance, Vivado has over 18 optimization operations, each with
more than 10 possible operation configurations. Since only certain
optimization sequences could be faulty, the vast search space of op-
timization sequences (e.g., over 1018+ for Vivado) makes exhaustive
testing impractical.

To this end, we propose MAGCS, a multi-agent reinforcement
learning-based method for detecting optimization faults in logic
synthesis tools. To tackle the first challenge, MAGCS includes a
test program selector component that uses circuit features to vec-
torize different test programs. MAGCS selects test programs with
the greatest variability in terms of vector distances to ensure the

3https://github.com/YosysHQ/yosys/pull/4612

(a) Crash Fault in Logic Synthesis Tool

(b) Crash Fault Log Report

(c) Code Maintenance Patch

Fig. 2: Yosys Crash Fault (Fault ID: 4610)

diversity of test programs. To tackle the second challenge, MAGCS
treats each optimization operation as an independent agent. MAGCS
first determines the position of each optimization operation within
the optimization sequence, then selects the corresponding operation
configuration. Through multi-agent reinforcement learning, MAGCS
dynamically adjusts the agents based on a reward function that
prioritizes the fault detection ability of optimization sequences and
minimizes equivalence check delays. MAGCS iteratively refines the
optimization sequence to find optimal configurations for fault detec-
tion. Finally, an optimization fault verifier is used to determine if the
optimized, synthesized design aligns with the intended functionality
of the original design with equivalence check. If the equivalence is
broken, an optimization fault could be found.

Experiments show that MAGCS outperforms baselines (i.e., De-
LoSo, DynSwarm, and InitSwarm) in detecting optimization faults,
with a fault detection rate 68.42% to 3100% higher than these
methods. Over one month of testing on the commercial tool Vivado
and the open-source tool Yosys, MAGCS identified 32 confirmed
faults, demonstrating its effectiveness across different synthesis tools.

The contribution of this work includes: (1) the first multi-agent
reinforcement learning-based approach for efficiently detecting op-
timization faults in logic synthesis tools; (2) 32 faults are found in
Vivado and Yosys, all of which are confirmed and fixed; (3) the
Vivado community acknowledges the value of our reported faults,
recognizing our contribution to their tool improvement; (4) we have
open-sourced MAGCS on Github4.

II. RELATED WORK

Fault detection in logic synthesis tools is critical in FPGA and
ASIC. Several automated testing frameworks have been proposed to
generate diverse Verilog programs for fault detection. Herklotz et
al. [4] developed Verismith, a tool that uses randomization techniques
to generate complex Verilog programs for testing logic synthesis
tools. Then, Vloghammer[5] was proposed, which can test the stabil-
ity of Yosys. Ratchev et al.[6] developed VERGEN, which evaluates

4https://github.com/MAGCS-method/MAGCS

synthesis tool performance by generating structured random programs
with specific design features. Thakur et al.[7] developed VeriGen,
which uses template-based generation to test logic synthesis tools.
While these approaches have been instrumental in fault detection,
their primary focus is code generation; they cannot thoroughly
explore faults arising from optimization sequences.

For optimization fault detection, Jiang et al. [8] proposed DeLoSo,
which utilizes a heuristic method to explore optimization sequences
that trigger faults in synthesis tool’s optimization operations. How-
ever, DeLoSo faces limitations, such as being prone to local optima
and not fully addressing test program diversity.

Overall, existing approaches lack thorough testing of optimization
operations and operation configuration. This study effectively com-
bines diverse optimization sequences with varied test programs to
improve the effectiveness of fault detection.

III. MAGCS FRAMEWORK

To detect optimization faults in logic synthesis tools, we propose
MAGCS, a multi-agent reinforcement learning-based fault detection
method. As shown in Fig. 3, MAGCS has three core components to
collaboratively select and validate optimization sequences.

A. Test Program Selector

To build a diverse and representative set of test programs, MAGCS
employs a selection method based on feature extraction and similarity
metrics. Given an initial set P of nseed Verilog test programs, MAGCS
represents each test program as a feature vector to encompass a
diverse range of logic structures and timing characteristics.

Specifically, previous studies [9] have proposed five categories of
features to represent a Verilog program, including

• data processing and operations, such as the number of arith-
metic, logical, and comparison operators, which characterize
data operation complexity;

• data flow control and representation, such as the number of
assignment statements, variable declarations, and numerical rep-
resentations, reflecting the synchronization and complexity of
data flow;

• structuring and modularization, such as the number of module
instantiation and declarations, describing the modular design
traits of Verilog programs;

• control flow and logic, such as the number of conditional
statements and loop control, which characterize the logical
control and decision-making in Verilog programs;

• abstraction and reuse, such as the number of parameter def-
initions and scope identifiers, which capture the handling of
parameterization and module reuse in Verilog programs.

We further add the sixth category of feature, namely timing
features, which analyzes the characteristics of the timing behavior
of hardware circuits, including the number of clock signals, flip-
flops, edge-triggered logic, and non-blocking assignments in Verilog
programs. These timing features are important for describing timing
control in FPGA and ASIC designs, particularly in timing-sensitive
circuits, enabling a more comprehensive characterization of Verilog
program behavior.

Based on these features, MAGCS converts each test program pi
in P into a feature vector Fi = [fi1 , fi2 , ..., fim], where m represents
the number of features. Each dimension in Fi is a quantified feature,
e.g., fi1 counts the number of arithmetic operators in pi, and fi2

Fig. 3: The framework of MAGCS

is the number of logical operators in pi. Once the feature vector is
constructed, MAGCS normalizes each feature dimension j by:

f̂ij =
fij −min(f1j , . . . , fnj)

max(f1j , . . . , fnj)−min(f1j , . . . , fnj)
(1)

where fij is the original feature value of test program pi in dimension
j , and min(f1j , . . . , fnj) and max(f1j , . . . , fnj) are the minimum and
maximum values of dimension j across all n test programs.

After normalization, the feature vector of pi is expressed as: F̂i =
[f̂i1, f̂i2, ..., f̂im]. This normalization compresses the feature values
of each dimension into the [0, 1] range, ensuring that all dimensions
are on the same scale and avoiding bias.

Next, MAGCS uses cosine distance to measure the dissimilarity
between test program features. Cosine distance reflects the an-
gular difference between two feature vectors and is defined as:
d
(
F̂i, F̂j

)
= 1− F̂iF̂j

∥F̂i∥∥F̂j∥ , where F̂i F̂j is the inner product of the

feature vectors, and
∥∥∥F̂i

∥∥∥ and
∥∥∥F̂j

∥∥∥ is the magnitudes of the vectors.

A large d
(
F̂i , F̂j

)
means two test programs are more dissimilar in

the feature space.
To select a maximally diverse test program set Psel , MAGCS

employs a recursive greedy method. First, a test program p1 is
randomly selected from the initial set P to serve as the first program
in Psel . For each remaining test program pi ∈ P , we compute the
sum of its cosine distances to all alreadly-selected programs in Psel :

D (pi) =
∑

pj∈Psel

d
(
F̂i, F̂j

)
(2)

Next, the test program pk with the greatest dissimilarity to the current
programs in Psel is selected, satisfying the following condition:

pk = argmax
pi∈P/Psel

D (pi) (3)

Using this method, we iteratively build a diverse subset Psel from
P until it includes nsel test programs. This method maximizes the
diversity within the feature space, facilitating broader fault detection
across various optimization scenarios in logic synthesis tools.

B. Optimization Selector

During the logic synthesis optimization process, the selection of
optimization operations and their configurations creates a vast search
space. For instance, in Yosys, commonly used optimization operations

include opt_expr, opt_clean, opt_merge, opt_muxtree,
and opt_demorgan. Each of them has various operation config-
uration. For example, opt_expr provides configurations such as
opt_expr -mux_bool for converting Boolean expressions into
multiplexers and opt_expr -full for applying comprehensive
logic transformations. The execution order of these operations (i.e.,
the optimization sequence) directly affects the quality of the synthesis
optimization.

To navigate this complex space, the optimization selector leverages
a multi-agent reinforcement learning framework A2C [10] for opti-
mizing the selection of operations and their configurations. In A2C,
agents make decisions by selecting actions from an action space,
which represents possible optimization operations and configurations,
based on the current state of the system. The state space contains
all relevant system information at a given time. By continuously
learning from feedback rewards, agents optimize their decisions,
identifying the best sequence of operations to improve fault detection.
Let the state space St represent the optimization sequence and its
corresponding operation configuration at a given time step t . St is
composed of a set of optimization operations and their configurations:

St = {(opt1,t, params1,t) , ... (opti,t, paramsi,t) , ..., (optn,t, paramsn,t)} (4)

where opti,t denotes the selection of the i-th optimization operation
at time t , and params i,t represents its operation configuration. For
instance, at time step t , the state might be:

St = {(opt expr, fine) , (opt clean, purge) , (opt merge, nomux)} (5)

The action space A defines the decisions that the agent can make
at each time step. Each agent’s actions include selecting the op-
eration configuration of the current optimization operation as well
as dynamically adjusting the order of these operations. Specifically,
action at ∈ A consists of two parts: opti,t+1 , which selects the
next optimization operation, and params i,t+1 , which specifies the
configuration for opti,t+1 . Hence, the action at is expressed as:

at = {(opti,t+1, paramsi,t+1)} (6)

To guide the agent in selecting effective actions in this complex
optimization space, we designed a reward function that maximizes the
fault detection ability of each action at while minimizing unnecessary

equivalence check timeouts. Specifically, the reward function R for
an action at is defined as:

R = θ · Nfault

Nfault + 1
− (1− θ) · Ntimeout

Ntimeout + 1
(7)

where Nfault represents the number of faults detected when applying
the current optimization sequence on all test programs in Psel,
and Ntimeout represents the number of timeouts encountered during
equivalence check for the same sequence and test set. Parameter
θ ∈ [0 , 1] controls the balance between positive rewards and neg-
ative penalties. Detecting an optimization fault results in a positive
reward, encouraging the agent to explore and find more faults,
thereby improving the effectiveness of the optimization sequence.
Timeouts during equivalence check are penalized because they delay
verification of the design against the netlist and disrupt the overall
testing process. By using timeouts as a negative reward, MAGCS
reduces unnecessary delays to ensure test efficiency.

Our framework adopts an Actor-Critic (A2C) approach with two
primary networks: a policy network (Actor) and a value network
(Critic) [11]. The policy network learns to select optimization actions
(operations and configurations) that maximize cumulative rewards,
while the value network estimates the expected reward value of the
current state to enhance decision accuracy.

At each time step t , the agent uses the policy network to select
an optimization action at based on the current state st , specifying
the next optimization operation and its configuration. Executing
at generates a new state st+1 , reflecting the updated sequence of
optimization operations and configurations.

After each action, an immediate reward R is calculated, evaluating
the optimization sequence based on detected faults and equivalence
check timeouts. The critic network estimates the expected value
of the state to guide further decisions. A2C iteratively refines the
agent’s policy, enabling effective selection of optimization operations
and configurations. The objective is to maximize the cumulative
discounted reward:

max
ω

E

[
T∑

t=0

γtRt

]
(8)

where ϖ is the policy network parameter, γ ∈ [0 , 1] is the discount
factor that reduces the influence of rewards in future time steps, and
Rt is the immediate reward at time step t . Based on prior studies [10,
11], we set ϖ to 0.001 and γ to 0.99.

Through iterative training, the agent gradually optimizes its strat-
egy, making optimal decisions in the complex optimization space
and maximizing the cumulative reward. The optimization selector
continuously improves fault detection by dynamically adjusting the
optimization operations and configurations, ensuring that each stage
of testing delivers high fault detection capacity and efficiency.

C. Optimization Fault Verifier

After identifying each optimization sequence with the optimization
selector, it is converted into optimization instructions applied to
the design file—a Verilog or HDL circuit representation—during
synthesis. In some cases, specific test programs and optimization
sequences may cause unexpected synthesis terminations, as discussed
in Fig. 2. This type of optimization fault indicates that certain
operations or configurations within the optimization process contain
issues, directly causing the synthesis to fail. Feedback on detected
faults and timeouts from each sequence is then relayed back to the
optimization selector, helping refine its strategy.

For optimization sequences that complete synthesis successfully,
the system generates synthesis file and conducts equivalence check

to ensure that the synthesized logic matches the original design’s
functionality. The equivalence check uses formal verification tools
to convert both the original design and the synthesized files into
comparable logic expressions, verifying whether their outputs match
across all input conditions. Specifically, the core of the equivalence
check is to ensure that the output logic of the source design Lsrc

matches the synthesized design Lsyn for all inputs x :

∀x ∈ X,Lsrc (x) = Lsyn (x) (9)

Here, X represents the complete set of possible inputs. If under
certain input conditions, Lsrc (x) ̸= Lsyn (x), this indicates that a
functional error occurred during the synthesis process.

By monitoring the synthesis process and conducting equivalence
check, it is possible to determine whether the optimization sequence
led to faults. If the synthesis process terminates unexpectedly or if
the equivalence check fails, this signifies an issue with the optimiza-
tion process. The optimization fault verifier ensures that any errors
introduced during optimization are detected.

IV. EVALUATION

We evaluated the effectiveness of MAGCS by answering the
following research questions (RQs): RQ1 – Effectiveness of MAGCS
Compared to Baseline Methods, RQ2 – Impact of Parameter on
MAGCS, and RQ3 – Effectiveness of MAGCS in Finding Real Faults.

A. Experimental Setup

Hardware Environment: Our experiments were conducted on an
x86 64 computer running Ubuntu 18.04.01, equipped with an Intel
Core i9-12900 CPU @ 2.80GHz with 24 cores and 128GB RAM.

Software and Test Program Generation: Our experiments employed
two mainstream logic synthesis tools: the commercial tool Vivado
(version 2024.1) and the open-source tool Yosys (version 0.41+126).
We chose the latest versions, as they are more likely to contain
recent fault fixes, which are particularly critical for developers [8].
To generate the initial test set P , we used Verismith [4] for its
ability to produce diverse and complex Verilog programs essential
for fault detection. Following configurations from prior studies [8],
we generated an initial set of nseed = 200, 000 programs, from which
a greedy method selected a diverse subset of nsel = 1, 000 programs.

Types of Errors: We identified four types of optimization faults:
(1) Crash Fault: a crash during synthesis with specific optimization
sequence; (2) Performance Fault: a hang or stall in the synthesis
process; (3) Parsing Fault: errors in parsing the design files; and
(4) Logic Fault: discrepancies between the synthesized and original
design due to logic errors.

B. Baseline Methods and Testing Strategy

To assess the performance of MAGCS, we used nine methods
for comparison. These methods are based on four basic methods,
i.e., Default, InitSwarm, DynSwarm, and DeLoSo [8]. Each method
has two steps, i.e., test program selection and optimization sequence
generation. For test program selection, we employed two strategies:
Rand, where 1,000 test programs are randomly selected from a pool
of 200,000, and Div, where 1,000 diverse test programs are selected
using the test program selector proposed in Section 3.1.

For optimization sequence generation, we have:
Default: Default optimization sequences in synthesis tools (e.g.,

opt-fast and opt-full in Yosys, and O1, O2, O3 in Vivado) are used.
InitSwarm: Using the default optimization operations in their fixed

order, with only the operation configuration randomized.

TABLE I: Effectiveness of MAGCS in Fault Detection

Tools Default InitSwarm DynSwarm DeLoSo MAGCS MAGCSRand Div Rand Div Rand Div Rand Div Rand
Vivado 0 0 1 1 2 3 7 9 16 26
Yosys 0 0 0 1 1 1 2 3 3 6
Total 0 0 1 2 3 4 9 12 19 32

DynSwarm: The positions of optimization operations are randomly
rearranged, and operation configurations are also randomly assigned.

DeLoSo: Genetic algorithm is used to explore optimization se-
quences by adjusting the positions of optimization operations and
tuning their configurations, aiming to identify combinations that may
trigger faults.

When combining the two steps, we have eight method vari-
ants, i.e., Default-Rand, Default-Div, InitSwarm-Rand, InitSwarm-
Div, DynSwarm-Rand, DynSwarm-Div, DeLoSo-Rand, and DeLoSo-
Div. For example, Default-Rand means that we use the default opti-
mization sequence with the randomly selected 1,000 test programs to
test synthesis tools. Additionally, we create a variant of MAGCS as
the ninth baseline, i.e., MAGCS-Rand, where the test program selector
in MAGCS is replace with the Rand strategy.

Each testing method was allocated a fixed runtime. During each
iteration, methods like MAGCS dynamically generated new opti-
mization sequences, while Default used predefined or randomized
configurations. These optimization sequences were applied for logic
synthesis. We analyzed both the synthesis process and checked for
equivalence between the synthesized netlist and the original design to
identify potential faults. When mismatches were detected, functional
simulations were performed to gather more detailed data, enabling
easier replication of the faults by the community.

For each detected fault, failed assertions and logs were analyzed
to remove duplicates. The Verilog program that triggers the faults
was incrementally reduced to its minimal form for reproduction. The
simplified design, the triggering optimization sequence, and relevant
error logs were submitted to the development team for verification
as either new or known issues.

C. RQ1: Effectiveness of MAGCS and Baselines

To answer RQ1, we use MAGCS and nine baseline methods to
test logic synthesis tools for over one month. This period includes
Verilog test program generation, test case selection and optimization
selector with each method, and fault verification. This evaluation
period aligns with previous studies [8]. For the tests, we used the
latest versions of Vivado (2024.1) and Yosys (0.41+126). We use
two identical machines to run all methods.

As shown in TABLE I, MAGCS identified 26 faults in Vivado and
6 in Yosys, significantly outperforming other methods. In comparison,
DeLoSo-Div found 9 faults in Vivado and 3 in Yosys, totaling
12. DynSwarm-Div detected 4 faults, while InitSwarm performed
poorly. Default-Rand and Default-Div did not find any faults, as the
default optimization sequence are typically extensively tested before
release. MAGCS demonstrated superior fault detection ability across
different tools by dynamically optimizing sequence combinations
through multi-agent reinforcement learning.

We also used a Venn diagram to further analyze the differences
between MAGCS and other baselines in fault detection. Since Default
and InitSwarm-Rand did not detect any faults in the experiment, they
were excluded from the Venn diagram. As shown in Fig. 4, the faults
found by MAGCS is a superset of those found by other baselines.
This indicates that MAGCS can both effectively select diverse test
programs and explore a broader optimization configuration space,
uncovering faults missed by other methods.

Fig. 4: Relationship of faults found by different methods.

TABLE II: Faults Detected by MAGCS with Different θ Values

Value of θ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Vivado Faults 1 2 4 3 7 8 11 13 11 9 5
Yosys Faults 0 1 1 1 2 3 4 4 3 1 1

Total 1 3 5 5 9 11 15 17 15 12 6

Conclusion: MAGCS is highly effective in detecting optimization
faults in logic synthesis tools, surpassing baseline methods by trig-
gering more optimization faults. The faults found by MAGCS form
a superset of those detected by other baselines.

D. RQ2: Impact of Parameter on MAGCS

To answer RQ2, we explore a key parameter in MAGCS: the
coefficient θ in the reward calculation formula (Equation 7). This
coefficient balances the detection of optimization faults with the
penalty for timeouts during equivalence check. In the experiment, the
value of θ ranged from 0.0 to 1.0, with intervals of 0.1. Notably, when
θ = 0 .0 , the system only penalizes timeouts without incentivizing
fault detection. In contrast, when θ = 1 .0 , the system entirely ignores
timeouts and focuses solely on the number of detected optimization
faults.

As shown in TABLE II, we recorded the number of faults detected
by MAGCS in Vivado and Yosys for varying values of θ. As θ
increased from 0.0 to 0.7, the number of detected faults steadily
rose. In this range, MAGCS prioritized fault detection, while allowing
some timeouts, which helped reveal additional faults. However, as θ
exceeded 0.7, the lack of penalty for timeouts began to interfere with
testing, causing verification disruptions and fewer detected faults. At
θ = 0 .7 , MAGCS achieved the best balance between fault detection
and time management, with high detection efficiency.

Conclusion: When θ is set to 0.7, MAGCS achieves the best
performance in detecting optimization faults in logic synthesis tools.

TABLE III: Details of Faults Found by MAGCS
ID Tools Fault ID Type Title
1 Vivado 8TyRQBSA3 CF Vivado Crash in HARTHOptPost::prepDsps()
2 Vivado 8gjjsGSAQ CF Vivado Crash in HARTLOptAbc::runNlOpt()
3 Vivado 8cMtrMSAS CF HARTNlOptimize::modOptimize() Error in Vivado
4 Vivado 7BrmgwSAB CF Crash in HARTHOptPost::optimize() During Synthesis
5 Vivado 8boSFLSA2 CF NDup::copyModule() Causes Vivado Setback
6 Vivado 8a5wHySAI CF HARTSWorker::runInternal() Crashing Vivado
7 Vivado 8YNb4PSAT CF Vivado Obstructed by hdi::tcltasks() Crash
8 Vivado 8jW2ngSAC CF HARTSWorker::runJob() Causing Vivado Failure
9 Vivado 8bGuVzSAK CF Vivado Crash in ConstProp::cleanup()
10 Vivado 8gjjtHSAQ CF Stack Overflow Check Causes Vivado Issues
11 Vivado 8gjjv8SAA CF Vivado Crash in GDpGen::implementBinary()
12 Vivado 8jVeCmSAK CF Crash Due to HARTTUpdateTNInstC::updateCell()
13 Vivado 8jW2nfSAC CF Optimize1::optimize() Malfunction in Vivado
14 Vivado 8aRj9KSAS CF HSynMod::connectInputPin() Crash in Vivado
15 Vivado 8jW2xgSAC CF Crash in NDbC::uniquePrefixes() in Vivado
16 Vivado 7AD9ZWSA1 LF unsigned() Function Error Due to Synthesis Parameters
17 Vivado 8X0u8WSAR PFF Vivado Freezes During Ubuntu Synthesis
18 Vivado 8ZY2lqSAD PFF Vivado Optimization Termination During Synthesis
19 Vivado 8Vzsu9SAB PFF Large Design Causes Vivado to Freeze
20 Vivado 8aRjBGSA0 PFF Ubuntu Design Optimization Freezes Vivado
21 Vivado 8boBgSSAU PFF Vivado Stalls During Synthesis on Ubuntu
22 Vivado 8bGuWxSAK PFF Vivado Hangs on Specific Verilog File During Synthesis
23 Vivado 8gjjwGSAQ PFF Synthesis Hang Issue in Vivado
24 Vivado 8XGDKYSA5 PFF Vivado Stalls on Specific File in Optimization
25 Vivado 8YmcY9SAJ PFF Vivado Optimization Causes Process Hang
26 Vivado 8XVl5vSAD PFF Ubuntu Synthesis Process Hangs in Vivado
27 Yosys 4610 CF Yosys Synthesis std::out of range Error
28 Yosys 4486 LF Yosys Optimization Causes Incorrect Output
29 Yosys 4491 LF Custom Yosys Passes Cause Faulty Synthesis
30 Yosys 4478 LF Yosys Optimization Error in PEEPOPT Pass
31 Yosys 4427 PF Yosys Verilog Parsing Error After File Read
32 Yosys 4458 PFF Yosys Synthesis Hash Table Overflow

Note: Crash faults (CF), Logic faults (LF), Parsing faults (PF), Performance
faults (PFF).

Fig. 5: Crash Fault Log Report for Fault ID: 8jW2ngSAC

(a) Netlist after correct synthesis by the logic synthesis tool

(b) Erroneous netlist resulting from a logic synthesis tool fault

Fig. 6: Comparison of waveform differences

E. RQ3: Effectiveness in Finding Real Faults

To answer RQ3, we used MAGCS to detect optimization faults
in Vivado and Yosys. As shown in TABLE III, we have reported a
total of 32 optimization faults to the Vivado and Yosys development
teams or communities, including 16 crash faults, 11 performance
issues, 1 parsing fault, and 4 logic faults. All reported faults have
been confirmed. We also shared the details of these fault on GitHub.
Below, we provide an example for each category of faults.

Crash Fault: Vivado Fault ID: 8jW2ngSAC5 occurred due to im-
proper resource scheduling during complex optimization operations.
As shown in the crash log in Fig. 5, the crash happened while execut-
ing a synthesis task. The Vivado thread scheduling mechanism failed
to properly manage multi-task loads, particularly for high-complexity
tasks like hierarchy flattening and clock-gating conversion. The log
indicates that the functions HARTSWorker :: runJob() and
HARTSWorker :: runInternal() encountered synchronization
issues during parallel task execution, leading to resource contention.
Additionally, the parallelListen() function failed to properly sched-
ule parallel tasks, causing thread blocking and ultimately triggering
the crash.

Logic Fault: Vivado Fault ID: 7AD9ZWSA16 is the inconsistency
of simulation waveform between the original design and the syn-
thesized netlist. At the 159ps timestamp in the waveform, as shown
in the red box in Fig. 6, a clear discrepancy is evident. The first
(correctly synthesized) netlist shows a value of 802, while the second
(incorrectly synthesized) netlist shows a value of 800. This significant
behavioral inconsistency issue arose in the module responsible for
logic optimization during synthesis. Logic optimization failed to
maintain the timing consistency of the design when dealing with
certain synchronous or nested logic. Although subtle, this timing
discrepancy can seriously cause the overall functionality of the circuit
to fail, especially in high-speed designs.

Parsing Fault: Yosys Fault ID:44277, as shown in Fig. 7, indicates
that Yosys failed to continue execution while generating the RTLIL
representation due to an assertion failure. The assertion failure
occurred at frontend/ast/ast.cc : 855, where node− > bits ==
v failed. In this case, Yosys encountered a bit-width mismatch
when generating the RTLIL representation for the modules top and

5https://adaptivesupport.amd.com/s/question/0D54U00008jW2ngSAC
6https://support.xilinx.com/s/question/0D54U00007AD9ZWSA1
7https://github.com/YosysHQ/Yosys/issues/4427

Fig. 7: Parsing Fault Log Report for Fault ID: 4427

(a) Log Report

(b) Code Maintenance Patch

Fig. 8: Yosys Performance Fault (Fault ID: 4458)

module282. The error occurred in the frontend Abstract Syntax Tree
parsing phase, where Yosys has a signal width mismatch during the
conversion from Verilog program to RTLIL.

Performance Fault: Yosys Fault ID:44588 was triggered during
logic synthesis optimization compilation. The hash table size ex-
ceeded the system’s allowable limit, triggering a std :: length error
exception, as shown in Fig. 8(a). This issue arose primarily because
Yosys did not handle hash table size calculations properly when pro-
cessing large design files, leading to rapid hash table expansion during
optimization. As shown in Fig. 8(b), Yosys developers resolved this
issue9 by adjusting the hash table size calculation logic, using a larger
prime number table to allocate hash table capacity. This ensured that
the hash table would function correctly when handling large designs.

Conclusion: MAGCS demonstrates excellent capabilities in detect-
ing optimization faults in logic synthesis tools. MAGCS successfully
identifies 32 optimization faults, which are all confirmed and fixed.

V. CONCLUSION

Optimization faults in logic synthesis tools can critically impact
hardware design accuracy and performance; therefore, effective fault
detection is essential. We present MAGCS, a reinforcement learning-
based multi-agent method to enhance fault detection in logic synthesis
optimizations. Tested on Vivado and Yosys, MAGCS demonstrated
high fault detection capabilities, finding 32 confirmed faults in both
tools. The Vivado community acknowledged our fault reports, and
shared a note of gratitude10: “Thank you for reporting a series of
Vivado synthesis issues and providing the related example designs.
Most of the issues can be reproduced and have been reported to
AMD’s developers to improve our tool.”.

VI. ACKNOWLEDGMENT

This work was supported by Key Research and Development
Project of Liaoning Province under Grant No. 2024JH2/102400059,
and in part by the National Natural Science Foundation of China
under Grant No. 62202079, No. 62032004, No. 62472062.

8https://github.com/YosysHQ/Yosys/issues/4458
9https://github.com/YosysHQ/Yosys/pull/4471
10https://support.xilinx.com/s/feed/0D54U00008Wfd2cSAB

REFERENCES

[1] G. Yan, X. Liu, and H. Wang, “Fast fpga accelerator of graph
cut algorithm with out-of-order parallel execution in folding
grid architecture,” in 2023 60th ACM/IEEE Design Automation
Conference (DAC). IEEE, 2023, pp. 1–6.

[2] G. Brilli, G. Valente, A. Capotondi, P. Burgio, T. Di Masciov,
and Valente, “Fine-grained qos control via tightly-coupled band-
width monitoring and regulation for fpga-based heterogeneous
socs,” in 2023 60th ACM/IEEE Design Automation Conference
(DAC). IEEE, 2023, pp. 1–6.

[3] L. Witschen, T. Wiersema, L. Reuter, and M. Platzner, “Search
space characterization for approximate logic synthesis,” in Pro-
ceedings of the 59th ACM/IEEE Design Automation Conference,
2022, pp. 433–438.

[4] Y. Herklotz and J. Wickerson, “Finding and understanding bugs
in fpga synthesis tools,” in Proceedings of the 2020 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays,
2020, pp. 277–287.

[5] C. Wolf, “VlogHammer https://github.com/YosysHQ/
VlogHammer,” 2019.

[6] B. Ratchev, M. Hutton, G. Baeckler, and B. van Antwerpen,
“Verifying the correctness of fpga logic synthesis algorithms,”
in Proceedings of the 2003 ACM/SIGDA eleventh international
symposium on Field programmable gate arrays, 2003, pp. 127–
135.

[7] S. Thakur, B. Ahmad, H. Pearce, B. Tan, B. Dolan-Gavitt,
R. Karri, and S. Garg, “Verigen: A large language model
for verilog code generation,” ACM Transactions on Design
Automation of Electronic Systems, vol. 29, no. 3, pp. 1–31, 2024.

[8] H. Jiang, P. Zou, X. Li, z. Zhou, and S. Guo, “Deloso: Detecting
logic synthesis optimization faults based on configuration diver-
sity,” ACM Transactions on Design Automation of Electronic
Systems, 2024.

[9] “Losyte https://github.com/LoSyTe-Logic-Synthesis-Tool-Test/
LoSyTe,” 2024.

[10] V. Mnih, “Asynchronous methods for deep reinforcement learn-
ing,” arXiv preprint arXiv:1602.01783, 2016.

[11] J. Lu, J. Yang, S. Li, Y. Li, W. Jiang, and J. Dai, “A2c-
drl: Dynamic scheduling for stochastic edge-cloud environments
using a2c and deep reinforcement learning,” IEEE Internet of
Things Journal, 2024.

