Empirical Software Engineering
https://doi.org/10.1007/510664-019-09793-8

®

A systemic framework for crowdsourced test report Check for
quality assessment updates

Xin Chen’ . He Jiang? - Xiaochen Li? - Liming Nie3 - Dongjin Yu' - Tieke He* -
Zhenyu Chen*

Published online: 27 February 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

In crowdsourced mobile application testing, crowd workers perform test tasks for develop-
ers and submit test reports to report the observed abnormal behaviors. These test reports
usually provide important information to improve the quality of software. However, due to
the poor expertise of workers and the inconvenience of editing on mobile devices, some test
reports usually lack necessary information for understanding and reproducing the revealed
bugs. Sometimes developers have to spend a significant part of available resources to handle
the low-quality test reports, thus severely reducing the inspection efficiency. In this paper, to
help developers determine whether a test report should be selected for inspection within lim-
ited resources, we issue a new problem of test report quality assessment. Aiming to model
the quality of test reports, we propose a new framework named TERQAF. First, we sys-
tematically summarize some desirable properties to characterize expected test reports and
define a set of measurable indicators to quantify these properties. Then, we determine the
numerical values of indicators according to the contained contents of test reports. Finally,
we train a classifier by using logistic regression to predict the quality of test reports. To
validate the effectiveness of TERQAF, we conduct extensive experiments over five crowd-
sourced test report datasets. Experimental results show that TERQAF can achieve 85.18%
in terms of Macro-average Precision (MacroP), 75.87% in terms of Macro-average Recall
(MacroR), and 80.01% in terms of Macro-average F-measure (MacroF) on average in test
report quality assessment. Meanwhile, the empirical results also demonstrate that test report
quality assessment can help developers handle test reports more efficiently.

Keywords Crowdsourced testing - Test report quality - Desirable properties -
Quality indicators - Natural language processing

Communicated by: Massimiliano Di Penta and David D. Shepherd

This article belongs to the Topical Collection: Software Analysis, Evolution and Reengineering
(SANER)

< Xin Chen
chenxin4391 @hdu.edu.cn

Extended author information available on the last page of the article.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-019-09793-8&domain=pdf
mailto: chenxin4391@hdu.edu.cn

Empirical Software Engineering

1 Introduction

Along with the rapid growth of mobile devices, mobile applications have become more and
more powerful and complex in modern society. Although users expect mobile applications
to be reliable and secure, the continuously increasing complexity makes them error prone
(Liu et al. 2010). To ensure the best potential quality of mobile applications, software testing
becomes more and more important. However, due to the specific characteristics of mobile
devices, such as unreliable networks, widely varied screen sizes, and diverse operation sys-
tems, mobile application testing is complex and challenging. Recently, many companies or
organizations tend to adopt crowdsourcing to perform testing for mobile applications by
recruiting a large group of potentially undefined, geographically dispersed online individu-
als (namely crowd workers) (Howe 2006; Mao et al. 2015). Therefore, crowdsourced testing
has acquired high popularity in the area of software engineering (Feng et al. 2015; Jiang
et al. 2018; Dolstra et al. 2013; Nebeling et al. 2012). Compared against traditional test-
ing (e.g., laboratory testing), crowdsourced testing involves diverse platforms, languages,
and users. Developers can gain real feedback information, function requirements, and user
experiences (Jiang et al. 2018). Meanwhile, crowdsourced testing recruits a large number
of workers for testing, thus achieving high parallelization and significantly improving the
test efficiency. Moreover, crowdsourced testing can provide a wide variety of test envi-
ronments, including mobile devices, network environments, and operating systems, which
effectively ensures high software and hardware coverage and greatly reduces the testing
cost.

In crowdsourced testing, workers perform test tasks and write test reports for observed
phenomena to help developers reveal existing bugs in the software. A typical test report is
composed of four fields, including environment, input, description, and screenshot. Over-
all, test reports are similar to bug reports in the content. However, compared with bug
reports, test reports have their own characteristics. First, test reports involve not only bugs,
but also user experience and function requirements from end users. Second, in this study,
test reports are generated in crowdsourced testing for mobile applications, thus they must
contain specific features of mobile applications, such as environment information and more
screenshots. Third, test reports are submitted by crowd workers who may have extremely
diverse experience, thus the quality of test reports varies greatly. These test reports are simul-
taneously submitted to developers in a short time and developers need to manually inspect
them and debug the potential bugs. However, developers encounter two kinds of challenges
in inspecting these test reports. On the one hand, the quantity of test reports is large, tremen-
dously exceeding the available resources of developers to inspect them. On the other hand,
due to the poor expertise of workers and the inconvenience of editing on mobile devices,
the quality of test reports may vary sharply (Jiang et al. 2018). Low-quality test reports will
greatly decrease the inspection efficiency of developers.

Many studies concentrate on decreasing the inspection time by reducing the quantity of
test reports to inspect. To help developers detect more bugs, some researchers attempt to
resolve the problem of test report prioritization based on the concept of “the earlier a bug
is detected, the cheaper it is to remedy” (Feng et al. 2015). They leverage either the textual
information (Feng et al. 2015) or the combination of both the textual information and the
image information (Feng et al. 2016) to prioritize test reports. Given that false positive
test reports (which actually report correct behaviors or behaviors that are triggered by the
third-party software (Wang et al. 2016)) take developers unnecessary inspection time, some
studies are conducted to discriminate them from raw test reports by leveraging text-based
classification techniques (Wang et al. 2016; 2017) or machine learning techniques (Wang

@ Springer

Empirical Software Engineering

et al. 2016). Similarly, some researchers attempt to partition test reports into clusters by the
text-based hierarchical clustering method (Jiang et al. 2018). Thus, developers only need to
inspect a representative test report from each cluster. In such a way, the inspection cost can
be significantly reduced.

Although the aforementioned studies have achieved promising results in reducing the
overall inspection cost of test reports, they do not consider the impact of the quality of a
single test report on the inspection efficiency. High-quality test reports contain relatively
complete information that can help developers better understand and fix bugs. Developers
can accomplish the inspection within a small amount of time. In contrast, low-quality test
reports generally lack some necessary details, such as test steps. At times developers have
to search and peruse relevant test reports to assist the fixing procedure, thus the efficiency is
seriously decreased. Ideally, if the quality of test reports are reliably assessed by automatic
methods, developers can select high-quality test reports for inspection, which will effec-
tively improve the inspection efficiency. Although to the best of our knowledge, no study
investigates how to model the quality of test reports, some studies about bug reports (gener-
ated from open source projects) and requirement specifications have proposed practicable
methods for quality prediction by defining a series of quantifiable indicators to measure the
desired features or properties (Zimmermann et al. 2010; Génova et al. 2013; Carlson and
Laplante 2014; Wilson et al. 1996).

In this paper, to help developers determine whether a test report should be selected
for inspection within limited available resources, we attempt to investigate the problem of
crowdsourced test report quality assessment by classifying test reports as either “Good” or
“Bad”. To effectively tackle this problem, we propose a new TEst Report Quality Assess-
ment Framework (TERQAF) to automatically evaluate the quality of test reports. First, we
systematically summarize some desirable properties to specify what an expected test report
should meet and define a taxonomy of quality indicators (which can be divided into four
categories) to measure these properties. Then, the numerical values of quality indicators are
determined according to the contents of test reports. Finally, we apply logistic regression to
train a classifier which takes in test reports as the input and outputs the class label (namely
Good or Bad) of test reports. In such a way, based on the predicted results, developers can
select high-quality test reports for inspection.

To evaluate the effectiveness of TERQAF, we collect five datasets with in total 936
test reports by performing crowdsourced testing for five mobile applications with our
industrial partners. With the help of developers, we manually annotate the quality of test
reports, thus forming the ground truth for experiments. We select the Random method
and CUEZILLA (a tool for bug report quality assessment) as baselines for comparison.
We investigate five research questions and employ widely used Macro-average Preci-
sion (MacroP), Macro-average Recall (MacroR), and Macro-average F-measure (MacroF)
to evaluate the effectiveness of TERQAF. Experimental results show that TERQAF can
achieve 85.18% in terms of MacroP, 75.87% in terms of MacroR, and 80.01% in terms of
MacroF on average and outperform the comparative algorithms by 35.24%, 26.00%, and
30.11%, respectively. Meanwhile, experimental results also demonstrate that the four cate-
gories of indicators play positive roles in predicting the quality of test reports. In addition,
we also perform an empirical experiment to validate the effectiveness of test report quality
assessment.

In this study, we make the following contributions:

1. To the best of our knowledge, this is the first work which aims to investigate the quality
of test reports and attempts to resolve the problem of test report quality assessment.

@ Springer

Empirical Software Engineering

2. We propose a new framework named TERQAF consisting of three components to auto-
matically evaluate the quality of test reports. TERQAF defines a series of desirable
properties and quantifiable indicators for test reports.

3. To evaluate the effectiveness of TERQAF, we conduct extensive experiments over
five crowdsourced test report datasets. Experimental results show that TERQAF can
effectively predict the quality of test reports and outperform comparative algorithms.

This paper is an extension of our previous work published in the Developer’s Collabora-
tion Track at the 25th IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER’18) (Chen et al. 2018). In this extension, we define new desirable
properties, improve the classifier by adopting logistic regression, introduce new evaluation
metrics, and add numerous analytical and empirical results.

The remainder of this paper is organized as follows: In Section 2, we introduce the back-
ground of crowdsourced testing and outline the motivation. Some desirable properties are
summarized to characterize an expected test report in Section 3. Section 4 defines a series
of indicators to measure the desirable properties and shows the corresponding relationship
between the desirable properties and the measurable indicators. In Section 5, we elaborately
describe the details of TERQAF for test report quality assessment. We present the exper-
imental setup and the experimental results in Section 6 and Section 7, respectively. The
threats to validity are discussed in Section 8 and the related work is reviewed in Section 9.
Finally, Section 10 concludes this paper.

2 Background and Motivation

In this section, we detail the background of crowdsourced testing and introduce several test
report examples to explain the motivation of resolving test report quality assessment.

In crowdsourced testing, developers from companies prepare test packages (software
under test and test tasks) for crowdsourced testing and release them online. Workers from
crowdsourced platforms select test tasks based on their test devices, perform testing, and
write test reports in a predefined format for abnormal behaviors (Jiang et al. 2018). Figure 1
presents the generic procedure of crowdsourced testing. In general, test reports mainly
involve natural language information, but sometimes also contain some necessary screen-
shots. For projects from different crowdsourced platforms, the contents of test reports are
basically similar (Feng et al. 2016; Wang et al. 2016). In our experiments, we perform
crowdsourced testing for five mobile applications with our industrial partners by the Kikbug
crowdsourced testing platform! in which test reports are defined by four fields, including
environment, input, description, and screenshot.

Table 1 shows four examples from the real industrial data. A notable point is that test
reports are written in Chinese in our experiments. To facilitate understanding, we translate
Chinese into English only for the four test reports. The second column is the environment
information, including the software and hardware configuration of test devices, such as
phone type, operating system, screen resolution, and system language. The following one is
the input information which is actually a series of test steps designed by workers based on
the test requirements. If the test steps are correct and detailed, developers can follow them

to probably reproduce the revealed bug. The fourth column is the description information.
When detecting a bug, workers will use some descriptive terms to describe the specific

Thttp:/kikbug.net

@ Springer

http://kikbug.net

Empirical Software Engineering

(J =
[N \ Release 9 Crowdsource
—_—p ——
.,
Software Test
under test tasks
Developers Crowd workers

Database Test reports

Fig.1 The generic procedure of crowdsourced testing

phenomenon. Occasionally, workers may report their user experience with the system. The
final column is the screenshot information which may provide some necessary images to
capture the system states when occurring a bug.

Due to the strict time limitation, developers have to recruit a large number of workers
to perform crowdsourced testing and promise some financial compensation for each test
task. However, workers are often inexperienced and unfamiliar with software testing. They
may perform test tasks for economic income and submit test reports without caring about
the quality (Wang et al. 2016). Meanwhile, it is very inconvenient to edit long descriptive
natural language on the mobile device soft keyboards. Therefore, test reports are widely
different in terms of the quality. For example, as shown in Table 1, 7 R; only contains sev-
eral words in the description, which does not provide enough information for developers to
understand what prompt function is missing. In addition, the brief test steps may make it
hard for developers to reproduce the reported bug. Similarly, 7 R, simply describes the shar-
ing problem and lacks concrete steps for reproduction. In contrast, 7 R3 is a high-quality test
report which provides sufficiently detailed test steps for reproducing the bug. It also clearly
states that the unexpected behavior causes the sharing problem. T R4 details two different
bugs in the description. It involves more details that the sharing operation fails over all
interfaces except QQ, but does not distinguish accurately the specific test steps for each bug.

Since test reports are one of the most important resources to reveal potential defects
of mobile applications, developers usually understand and fix these defects to ensure the
released software as secure as possible. However, due to the impact of the widely varied
quality, test report inspection is a tedious and time consuming task. Specially, low-quality
test reports may take developers more resources and efforts, thus developers cope very
slowly with some test reports or perhaps not at all due to the constraint of limited avail-
able resources. In practice, in crowdsourced testing, crowd workers usually submit duplicate
test reports to reveal the same bug. Therefore, developers should select a high-quality test
report from the duplicates for inspection. In this paper, to help developers predict whether
a test report can be selected for inspection, we focus on resolving the problem of test report
quality assessment. Based on existing studies about quality prediction for bug reports and

@ Springer

Empirical Software Engineering

=1

*SPa22oNS JoBLIAIUT
00 2y Auo ‘soeyur OO pue
‘3ojqororwr ‘yeyDap Ayl Aq saamord
Suwreys uoypy g ‘semmoid popeoy
-umop dy) uado o3 suoneordde
JeyM SPUSWITIOOAT WRISAS oYL, |

"paIxa A[pajoadxaun
wo)sAs Iy} pue PaINdd0 JIOLD U
‘ojqorotwt 10 JBYDIM Aq SpuaLly
3o 9o 03 saxmord Jurreys uAYA

jeyDoM Aq sqrej uonerado Surreys

‘uon
-ounj jdwoid oN

'sa1nyord areys pue somy
-o1d peojumoq ‘¢ °.seamord
Q10U OU,, JO 9INYEaJ 9Y) YOO
0) UQAIOS A} [[0I0S A[[eIUOZ
-LIOH "¢ 'seamord moIA 03)1
I9)UQ pue A1039)80 B 19[S 7
I81] A1039180 9Y) U0 YOI |

‘Sorqootwu
pue 1eYDIM Aq 21mord pajos[as ay)
QIeyS "/ "UOYINQ 2IBYS Y} UO YIID
‘9 "A1032180 sty 1opun 21moid duo
199[9§ G "A1032780 1511} A 199[9S
't o1do) pasardur ue Jnduy “¢ ‘wo)
-10q 9y} Je uoNNg YoIeas dy) uo
yo1) ‘g -uoneodrdde oy uadp 1

UM

AQ Spuol JO 9[OID IO SPUdLy
0) sormord oreys o3 poyrej St |
‘uon

-0unj IOpuruIal oy} Jooyd

0) puo 9y} O} UJDIOS Y}

[1010s A[[eONIoA UL], "Uon)

-ounj JOpurwal oy} Jooyd

0] pud 9y} 0} UJAIOS Y}

[[010S A[[eJUOZLIOY ‘QWIdY}

B 109[9$ ‘w030 2y} JB U0}

-nq yoIeas Yy uo o1

[oul 9 :uonnjosay
U2I0§ 9souly)) :o8en3ue] wISAS
Ty proipuy wasks Suneradp
HILTy TN twoery :edf) ouoyq

asoury) :oSenue|
WRISAS YOUI G'G :UONN[OSNY USIOS
09 proipuy wsAS Suneredp
Ls Axee3 Sunsweg :2dA) ouoyq

[OUI 9 :UuonN[OSNY
uQa10§ dsaury) :afensue waISAS
¥y proipuy walskS Suneradp
0006ND HANOMD :2dA) ouoyqg

asaury) :oFenJue WISAS
[youlr G'G :UOIN[OSY UG
'S proipuy :wasAS Juneradp
¢ XN nzwRy :2dA) ouoyq

Yy .L

&L

RN

1y

JOYSUAQIOS

uondrosaq

(sdos 1s93) Indug

JuawIuoIIAUY

“ON

s1r0dar 159) peomospmoid jo sopdwrexy | ajqer

pringer

NS

Empirical Software Engineering

requirement specifications, we define a set of desirable properties and measurable indicators
to model the quality of test reports.

In practice, many studies have been conducted for quality assessment of textual docu-
ments. In software engineering, requirement engineering is one of the most important stages
which aims to acquire the real expected demands of customers and determine what functions
should be realized to meet the demands. The requirement engineering process is devoted to
iteratively generating and refining the software requirement specifications which play a key
role in guaranteeing the quality of projects in software development (Carlson and Laplante
2014). However, manually performed quality assessment for requirement specifications is
always burdensome and time consuming (Parra et al. 2015; Thakurta 2013). Therefore,
many studies are conducted to explore efficient techniques and tools to help developers
automatically model the quality of requirement specifications. In the literature, the most
common solution is to define a set of quantifiable indicators based on the textual contents to
measure the desirable properties of requirement specifications (Génova et al. 2013; Carlson
and Laplante 2014; Rosenberg and Hammer 1999). For example, the indicator size (i.e., text
length) directly evaluates the conciseness and indirectly measures the understandability and
completeness of requirement specifications (Génova et al. 2013).

3 Desirable Properties of Test Reports

As is well known, quality is an ambiguous concept that is associated with different assess-
ment criteria (Génova et al. 2013). In most cases, quality assessment mainly depends on
manual judgement. For a given test report, different developers may evaluate it differently
with respect to quality due to their respective perspectives. Therefore, based on manual
evaluation, we need to uniformly define some desirable criteria or properties which can
effectively reflect what test reports we regard as high-quality (namely good) or low-quality
(namely bad). In this section, we systematically summarize some desirable properties of test
reports and give their explicit definitions.

Although several studies have been conducted for crowdsourced testing, they generally
concern how to help developers reduce the inspection cost of test reports. This study is the
first work aiming at investigating the quality of test reports. Actually, test reports are similar
to bug reports. Compared with test reports, bug reports contain not only bug description and
test steps, but also sometimes code examples. However, many studies about bug reports pri-
marily focus on the textual contents since they are the most widely used and the most easily
comprehensible (Zimmermann et al. 2010). By an in-depth investigation on existing studies
about bug reports, we summarize some desirable properties including atomicity, correctness,
completeness, conciseness, understandability, unambiguity, consistency and reproducibil-
ity (Rastkar et al. 2014; Zimmermann et al. 2010; Bettenburg et al. 2008; Hooimeijer and
Weimer 2007; Joorabchi et al. 2014), which are also adapted to test reports. We present the
detailed definition of these desirable properties as follows:

— Atomicity: each test report reveals one bug without mixing information about other
bugs.

— Correctness: the revealed bug reflects a real defect existing in the system and each field
provides the prescribed information.

— Completeness: each test report contains all fields and all information should be
complete.

@ Springer

Empirical Software Engineering

— Conciseness: each sentence in a test report conveys different information and no
sentence conveys irrelevant information about the bug.

— Understandability: the contained content can be clearly understood without difficulty
and the described bug can be correctly identified according to the contents.

— Unambiguity: there is only one interpretation for each word and sentence in the test
report.

— Consistency: there are no contradictions among all information fields in each test report.

— Reproducibility: the provided test steps are detailed and effective for reproducing the
revealed bug.

4 Taxonomy of Indicators

In the previous section, we have clarified what we should measure for a test report.
Although these desirable properties mainly rely on individually subjective judgments, it
does not mean that they are arbitrary and easy to measure. Therefore, we need to define
a series of measurable indicators based on intrinsically objective characteristics of the tex-
tual contents to evaluate the desirable properties. In practice, these quantitative indicators
are related to the qualitative properties to some extent. They can directly or indirectly
measure the quality of test reports (Génova et al. 2013). In literature, researchers have
summarized an overall taxonomy of indicators to measure the desirable properties of
requirement specifications. Differing from test reports, requirement specifications usu-
ally contain more contents and involve more desirable properties, such as modifiability,
abstraction, and verification (Génova et al. 2013). Therefore, some indicators may be not
intrinsically appropriate to evaluate the quality of test reports. Based on this fact, we define
the quality indicators by combining the existing studies (Génova et al. 2013; Carlson and
Laplante 2014) and the specific characteristics of test reports. They can be divided into four
categories:

— Morphological indicators, e.g., size and readability, which mainly reflect the surface
characteristics of the textual contents of a test report without considering the conveyed
semantic information.

— Lexical indicators, e.g., the number of imprecise terms or anaphoric terms, which
attempt to lexically measure the textual content of a test report according to the term
lists defined by users.

— Analytical indicators, e.g., the usage of domain terms, which focus on semantically
analyzing the textual contents of test reports by leveraging some domain terms provided
by existing studies.

— Relational indicators, e.g., itemization, which try to evaluate the structured properties
of test reports or reveal whether each test report contains all the field information.

In this section, we elaborately describe each quality indicator and definitely specify
what desirable properties it evaluates. Since test reports are composed of four fields, i.e.,
environment, input, description, and screenshot, we need to evaluate the four fields.

4.1 Morphological Indicators
In quality measurement, size and readability index are the most widely used and the

most easily acquired morphological indicators. In addition, we also take the number of
punctuation signs as an indicator to measure the quality of test reports.

@ Springer

Empirical Software Engineering

4.1.1 Size

In general, the size of a document can be calculated by the number of characters, words,
phrases, sentences, text lines, and paragraphs (Génova et al. 2013; Carlson and Laplante
2014). It directly evaluates the atomicity and conciseness of test reports and is indirectly
associated with all other desirable properties. Due to the inconvenience of editing on mobile
devices, test reports are usually short, which only contain one or several sentences. In addi-
tion, considering that the number of words or phrases is not suitable for measuring the size
of test reports written in Chinese, we only adopt the number of characters within a test report
as the metric of size. Intuitively, long test reports may take developers much reading time,
while short test reports may miss some important details about the bugs. As a result, a test
report should keep the size neither too long nor too short.

4.1.2 Readability

Readability is another representative quality indicator which attempts to evaluate the dif-
ficulty level of reading a document (Génova et al. 2013; Carlson and Laplante 2014). In
literature, related studies have been extensively conducted to investigate the readability
of documents written in Chinese. Diverse formulas have been proposed to compute the
readability scores. The first acknowledged formula for Chinese documents readability mea-
surement is ¥ = 14.9596 + 39.07746X; + 1.011506X, — 2.48X3 (Yang 1970), where X
represents the proportion of difficult words (excluded from 5,600 commonly used words),
X5 is the number of sentences in a document, and X3 denotes the average stroke count of
characters within a sentence. Certainly, there exist other readability measurement formu-
las, suchas Y = —11.946 4+ 0.123X| + 0.198X, + 0.811X3 (Guo 2010), where X is the
average length of a sentence, X, and X3 denote the numbers of difficult words and difficult
characters (words or characters excluded by the common dictionary), respectively. In this
study, we adopt the former to calculate the readability scores of test reports.

This indicator is also appropriate to evaluate the readability of documents written in
other languages. For example, we can use the Flesch readability index (Flesch 1948), one
of the most widely used measurement, to model the readability of English test reports. Its
computation formula is Rpjesen, = 206.835 — (1.015 x WPS) — (84.6 x SPW), where
WPS and SWP are the average numbers of words within a sentence and syllables of a
word, respectively. In general, the larger the value is, the higher the understandability of the
text is. In addition, Jose replaces the coefficient 84.6 with 60 and increases W PS by 0.4
times to make the Flesch readability formula effective to calculate the readability of Spanish
documents (Férnandez HJ 1959).

4.1.3 Punctuation

Another important indicator is punctuation marks (Génova et al. 2013) which are related
to the understandability of test reports. Punctuation marks are used to break down a long
text into a series of relatively short sentences. The absence of necessary punctuation marks
usually causes difficulty to understand a long text. In contrast, excessively using punctua-
tion may result in the loss of semantics. Although the number of punctuation marks can be
easily obtained, it is hard to determine the actual acceptable number for a given text. In prac-
tice, users have the expected average sentence length which can be empirically determined.
When the size of a test report is determined, the number of punctuation marks can be corre-
spondingly calculated according to the expected average sentence length. In aggregate, the

@ Springer

Empirical Software Engineering

average sentence length is a more easily measurable indicator. Notably, in this study, the
used punctuation marks include not only Chinese but also English punctuation marks.

4.2 Lexical Indicators

Compared to morphological indicators, lexical indicators need some reference information,
namely term lists defined by users, to measure the quality of test reports. In the existing
studies about requirement specification quality assessment, researchers have summarized
overall term lists for English documents (Génova et al. 2013; Carlson and Laplante 2014).
In this study, we reuse these term lists and translate them into Chinese. Nevertheless, we
add some synonyms by leveraging the thesaurus? to form the ultimately used term lists
for the processing of Chinese documents. In practice, these terms are commonly used in
documents, we can easily collect them according to the Chinese dictionaries even though
no referenced term list is available.

4.2.1 Imprecise Terms

When detecting a bug, workers need to write a test report to describe the concrete phe-
nomenon with descriptive terms. However, due to the uncertainty and the shortage of
vocabulary, they tend to use some imprecise terms which contain ambiguous information.
At times, this will introduce ambiguities for understanding and fixing the bug. Therefore,
a high-quality test report should not contain imprecise or subjective terms. In literature
(Génova et al. 2013), the imprecise terms are collected and divided into six different groups
according to their characteristics.

— Quality: good, bad, moderate, medium, efficient, etc.

— Quantity: enough, abundant, massive, sufficient, etc

— Frequency: generally, usually, typically, almost, etc.

— Enumeration: several, multiple, some, few, little, etc.

— Probability: can, may, possibly, perhaps, optionally, etc.
— Usability: experienced, familiar, adaptable, easy, etc.

4.2.2 Anaphoric Terms

Anaphoric terms are pronoun or other linguistic units to refer back to other terms in former
sentences, which are useful to avoid the recurrence. Typically, anaphoric terms contain per-
sonal pronouns (such as “it”, “them”), relative pronouns (such as “that”, “which”, “where”),
and demonstrative pronouns (such as “this”, “that”, “these”, “those”) (Génova et al. 2013).
In practice, using anaphoric terms is grammatically correct and sometimes can effectively
improve the conciseness of contents. However, they may introduce threats to the quality
of test reports with respect to the understandability due to their inherent imprecisions and

ambiguities. Therefore, test reports should exclude all anaphoric terms.
4.2.3 Directive Terms

In contrast to imprecise terms and anaphoric terms, directive terms play a positive role in
predicting the quality of test reports (Carlson and Laplante 2014). They are usually used to

Zhttps://www.ltp-cloud.com/download/

@ Springer

https://www.ltp-cloud.com/download/

Empirical Software Engineering

make test reports more understandable. Generally, the following words or sentences behind
directive terms possibly complement some additional details. For example, they may give a
specific example to further describe or explain the concrete behaviors of the bug. Therefore,
a high proportion of the usage of directive terms may be good to improve the understand-

99 e

ability of test reports. In test reports, the widely used directive terms involve “e.g.”, “i.e.”,

9 <

“for example”, “for instance”, “note”, etc.
4.3 Analytical Indicators

As mentioned in the previous section, the target of analytical indicators is to semantically
analyze the textual contents of test reports. In the studies related to requirement specification
quality assessment, researchers have shown that verbal tense, mood terms, and domain terms
are the most important analytical indicators for English documents (Génova et al. 2013).
However, different from English, Chinese does not involve verbal tense. Meanwhile, our
investigation on real industrial data indicates that test reports do not contain or contain few
mood terms. Therefore, we only adopt domain terms to measure the quality of test reports
in this study.

Typically, domain terms refer to the words or phrases that are organized either as a sim-
ple glossary of terms or in a complicated structural form such as thesauri or ontologies
(Génova et al. 2013). However, in different areas, domain terms may vary sharply. Conse-
quently, defining and collecting relevant domain terms for a specific area is an important but
burdensome task. Fortunately, Ko et al. (2006) have systematically summarized the domain
terms for bug reports. In a follow-up study, Zimmermann et al. have used these terms to
evaluate the quality of bug reports (Zimmermann et al. 2010). Taking the same nature of test
reports and bug reports into consideration, these domain terms also adapt to test reports. In
this study, we reuse the existing term lists and introduce negative terms to form the eventual
domain terms. Notably, we partition them into four categories, all of which play positive
roles in measuring the quality of test reports.

4.3.1 Negative Terms

A software bug actually reveals an incorrect or missing function of an application. In crowd-
sourced test reports, workers tend to use negative terms to represent the absence of system
functions, such as “no”, “not”, “miss”, “fail”, and “lack”. When identifying a negative term,

it potentially indicates that a bug is revealed in the test report.
4.3.2 Behavior Terms

Based on the definition from Wikipedia,3 a software bug refers to a flaw, defect, failure, or
fault that makes the computer program or system occur incorrect or unexpected results. In
test reports, worker usually describe the incorrect result by using some behavior terms, such

CLINYS

as “error”, “bug”, “defect”, “problem”, “failure”, “flaw”, and “fault”.
4.3.3 Action Terms

When performing test task, workers click on some user interfaces (e.g., button, dialog) to
detect potential bugs. This procedure will produce a series of test steps which are actually

3https://en.wikipedia.org/wiki/Software_bug

@ Springer

https://en.wikipedia.org/wiki/Software_bug

Empirical Software Engineering

regarded as test cases in crowdsourced testing. Therefore, test steps must involve some

9 9

action terms, such as “open”, “select”, “click”, “enter”, and “check”.
4.3.4 Interface Elements

To be exact, test steps are actually a sequence of events which are triggered by clicking
on the user interface elements. If the input of a test report is associated with test steps, it
may include some action terms followed by corresponding user interface elements, such as
“button”, “toolbar”, “menu”, “dialog”, and “window”.

In summary, negative terms and behavior terms are used to evaluate the descrip-
tions of test reports while action terms and interface elements are adopted to measure
the inputs.

4.4 Relational Indicators

In practice, test reports are structured documents consisting of several fields of which each
provides some critical information to help developers understand and fix the revealed bugs.
Ideally, a good test report involves all field information and the content in each field should
be correct and related to the same bug. For instance, Field description should present the
detailed bug information and Field input should list the concrete test steps. However, as
same as the empirical investigation on bug reports (Zimmermann et al. 2010), due to the
difficulty of providing key information and the poor performance of workers, test reports
usually lack important details or contain incorrect information in a certain field. Therefore,
we define some relational indicators to measure the correctness and the relevance of test
reports.

4.4.1 Itemizations

Undoubtedly, test steps are the most important information to reproduce the bug in test
reports. In editing test reports, some experienced workers may leverage itemizations or
enumerations to orderly organize test steps in the corresponding field to help developers
discriminate each step more efficiently. Generally, if the input in a test report is presented
in a structured form, such as itemizing with itemizations or enumerations, it indicates that
the input is associated with test steps with a fairly high probability, as shown T R, and
T R3 in Table 1. To identify itemizations in test reports, we detect the lines starting with
an itemization character, e.g., -7, “x”, or “+”. Similarly, we also distinguish enumerations
by examining whether each line starts with numbers or serial numbers in which num-
bers are enclosed by parentheses, brackets or followed by a single punctuation character
(Zimmermann et al. 2010).

4.4.2 Environment

As shown in Table 1, Field environment lists some basic configuration of mobile devices
to help developers acknowledge the adaptation of mobile applications. As a result, a high-
quality test report should contain environment information. Compared with other fields,
the environment field is presented in a fixed form with some specific keywords, includ-
ing “phone type”, “operating system”, “screen resolution”, and “system language”. By
searching these keywords, we can easily acknowledge whether the test report provides the
environment information or not.

@ Springer

Empirical Software Engineering

4.4.3 Screenshots

In test reports, screenshots are also important information for developers to understand the
revealed bug by capturing the abnormal phenomenon of the system. Thus, a complete test
report should contain some necessary screenshots. In our experiments, screenshots are uni-
formly packaged in attachments which are simultaneously delivered to the database together
with test reports. In general, these attachments contain only screenshots. Even though the
attachments contain text, we can use the file tool in UNIX to identify screenshots (Zim-
mermann et al. 2010). In this paper, if an attachment is detected, the test report must carry
screenshots.

In aggregate, these quality indicators are defined based on the textual contents and the
compositions of test reports. They are more or less associated with one or more desirable
properties of test reports. To facilitate understanding, we show the corresponding relation-
ship between measurable indicators and desirable properties in Table 2, where “X” indicates
a direct relationship between the measurable indicators and the desirable property while
“e” represents an indirect relationship. For example, the indicator size directly measures the
atomicity and conciseness and is indirectly related to all other properties. In the table, the
relationships of the morphological and lexical indicators are defined based on the existing
studies (Génova et al. 2013; Zimmermann et al. 2010). The relationships of the analytical
and relational indicators are summarized based on our experience.

5 Test Report Quality Assessment Framework

In this section, we describe TERQAF consisting of three components, as shown in Fig. 2.
First, we preprocess crowdsourced test reports by word segmentation. Then, we determine
the numerical values of measurable indicators according to the contents of test reports.
Finally, we adopt logistic regression to train a classifier and leverage the trained classifier
to predict the quality of test reports as either “Good” or “Bad”.

5.1 Preprocessor

The preprocessor aims to implement word segmentation for test reports. In our experiments,
test reports are written in Chinese with extremely few English terms. To evaluate the qual-
ity of test reports, we define a series of indicators according to the contents of test reports.
Many indicators, such as lexical indicators and analytical indicators, leverage term lists
to evaluate test reports. Therefore, we need to perform word segmentation for test reports
by using Chinese Natural Language Processing (NLP) tools. In literature, Language Tech-
nology Platform (LTP),* ICTCLAS,’ and IKAnalyzer® are the widely used NLP tools for
processing Chinese documents (Jiang et al. 2018; Feng et al. 2015; Feng et al. 2016). In this
study, we adopt IKAnalyzer since it has good effectiveness in word segmentation and can
implement simple processing for English (Jiang et al. 2018).

As for term lists, we first collect the initial term lists by referring to the studies conducted
by Génova et al. (2013) and Zimmermann et al. (2010), respectively. Then, we translate the

“http://www.ltp-cloud.com/
Shttp://ictclas.nlpir.org/
Shttp://www.oschina.net/p/ikanalyzer

@ Springer

http://www.ltp-cloud.com/
http://ictclas.nlpir.org/
http://www.oschina.net/p/ikanalyzer

Empirical Software Engineering

XXX X

e X X X

<

o X

<

X
X
.

X

o X X X X

ol

X

S)JOYSUI0IOS
JUSWIUOIIAU
SUONRZIWA)]
SJUQWIQ[Q OBJIIU]
SULId) UOTOY
SULId) JOTARYQY
SuLId) JATBSON
SULIS) QAT)OAII(]
suid) ouoydeuy
uL19) asroarduy
uonemoung
Aqepeay

ozZIS

Anpiqronpoxdey

Ayiqepueisiopun)

SSQUASIOU0))

Kooy

Kyredoid sjqenseg

JI03BTpUY

sanzodoid a[qeIIsop pue s10jedIpul A qeInseIWw udamlaq diysuonerar Surpuodsariod Ay, ¢ ajqeL

pringer

NS

Empirical Software Engineering

Test report
dataset

lica N
<Pl epr O(‘e\wl\—’/ Im 1mtox

extractor //

Good-quality
test reports

Testing set

Bad—quality
test reports

Fig.2 TERQAF framework

term lists to form Chinese term lists, and leverage the thesaurus’ to add some relevant terms
for each list. Finally, we collect and add new term lists, including the negative term list and
the environment term list. Thus, the ultimately used term lists are formed.

5.2 Indicator Extractor

The indicator extractor is designed to build the quality vector for each test report. As men-
tioned above, we define 13 indicators to measure the quality of test reports. As a result, each
test report can be represented by a 13-dimensional quality vector in which each dimension
corresponds to a single indicator. Its numerical value is determined based on the contents of
the test report. Next, we explain how to determine the numerical value of each dimension in
detail.

For the indicator size, the numerical value is the number of Chinese characters (excluding
punctuation marks) of text contained in the test report. The value of the indicator readability
can be calculated by the Chinese readability measurement formula. For the indicator punc-
tuation, we replace it with the average sentence length that can be determined by the size
of text and the number of punctuation marks. In terms of morphological indicators and lex-
ical indicators, the value of each indicator is the number of occurrences of related terms in
the text. Notably, if a term occurs repeatedly in the text, we repeatedly calculate the num-
ber of occurrences of the term. For example, assuming a term list only contains two terms,
one occurs 2 times and the other occurs 3 times. The value of the indicator is 5. Similarly,
we calculate the value of the indicator ifemizations according to the number of occurrences
of the same type of itemizations which refers to itemizations with the same structure. For
example, “1)” and “2)” are the same type of itemization, but “1” and “1)” as well as “+”
and “-” are different types of itemizations. For the indicator screenshot, we define the num-
ber of screenshots as the value of the corresponding dimension. Different from the above
indicators, the value of the indicator environment is 0 or 1. We determine the value by
identifying whether the environment information contains all the four keywords, including

“phone type”, “operating system”, “screen resolution”, and “system language”. If yes, the
value is 1; otherwise, the value is 0.

9

7https://download.csdn.net/download/u010721054/9494800

@ Springer

https://download.csdn.net/download/u010721054/9494800

Empirical Software Engineering

5.3 Classifier

To predict the quality of test reports, we need to construct a classifier. Considering that the
collected data is small-scale, we adopt logistic regression to train the classifier.

5.3.1 Logistic Regression

In this study, we employ logistic regression to train the classifier. Logistic regression is a
generally used machine learning algorithm (Hsu et al. 2019). It is usually used to analyze
the association between a categorical dependent variable and a set of independent variables.
It requires that the dependent variable has only two values, such as “0” and “1” or “Yes”
and “No”. Since logistic regression does not assume that the independent variables meet the
normal distribution, it is widely applied to resolve various binary classification problems
(Denoeux 2018).

In logistic regression, each sample is represented as [x1, x2, - - - , xg; y], where x; (j =
1,2,---, k) represents a feature value, and y is the label of the sample. The classification
model of logistic regression is defined:

ho(x) = N (M

+ eeTx

where 8 = {61, 62, - - - , O} represents the set of regression coefficients, hg(x) is the pre-
diction result. The logistic regression model leverages the maximum likelihood estimate to
calculate the regression coefficients:

P(ylx) = (ho(x))’ (1 — hg(x))' ™, y =1 or 0)

The maximum likelihood estimate is as follows:

L®) = [T PO D) = [tha)" (1 — hg (x> 3

i=1 i=1
where i is the index of a sample, and n represents the number of samples.
5.3.2 Training Classifier

In this study, each test report can be regarded as a sample. By the defined indicators, we
represent each test report as a vector [xy, x2, -+ , x13, y], where x;(j = 1,2, --- , 13) rep-
resents the numerical value of an indicator, y denotes the class label of a sample and its
value is 1 (Good) or 0 (Bad).

Classifier training follows a supervised learning paradigm. Based on the objective of
the task, we need sufficient samples including good quality test reports and bad quality
test reports. In this study, we collect five datasets. The detailed information is presented
in Section 6. We employ leave-one-out cross validation (Petrosyan et al. 2015) to train the
classifier. The main reason for employing leave-one-out cross validation is that the results
are more reliable and reproducible (Jiang et al. 2016). Meanwhile, leave-one-out cross vali-
dation is suitable for training the classifier with small-scale data. More specifically, in each

@ Springer

Empirical Software Engineering

run, one dataset is chosen as the testing set and all the other datasets are treated as the
training set. Then, all the test reports from the training set are fed into the classifier to per-
form training. The training objective is to minimize the logarithm function of the maximum
likelihood estimate:

J(©) = 1og(L(©)) = [[6P1og(ha(x D)) + (1 = yD)log(1 — ha(x D)) (4)

i=1

6 Experimental Setup

In this section, we detail the experiment setup. First, we present our Research Questions
(RQs) and explain why setting these RQs. Then, the data acquisition and data validation are
described. Third, the evaluation metrics are introduced.

6.1 Research Questions

In this study, we propose a new problem of test report quality assessment and present our
attempts towards resolving the problem. We define a series of measurable indicators and
develop a new framework named TERQAF consisting of three components to predict the
quality of test reports. The experimental goal includes two aspects: validating the effective-
ness of TERQAF and evaluating the role of the defined indicators. Therefore, we design the
following four research questions (RQs).

RQ1. Can TERQAF outperform some baseline methods in measuring the quality of
test reports?

RQ2. Can the classifier trained by logistic regression outperform the classifiers built
by other methods?

RQ3. How do the four categories of indicators impact the performance of
TERQAF?

RQ4. What is the importance degree of each indicator?

Both RQI and RQ?2 are designed to evaluate the effectiveness of TERQAF. RQ/ aims to
evaluate how effective TERQAF is in predicting the quality of test reports. RQ2 attempts to
validate the efficacy of prediction method in the critical component (namely the classifier),
i.e., whether logistic regression has better performance than other comparative prediction
algorithms. Both RQ3 and RQ4 are designed to explore the role of the defined indicators.
RQ3 is to validate the impacts of the four categories of indicators in predicting the quality
of test reports by quantitative analysis. RQ4 tries to investigate the degree of importance of
each indicator by qualitative analysis.

6.2 Data Acquisition and Validation

In this subsection, we detail how to collect the data and how to form the ground truth for
experiments.

@ Springer

Empirical Software Engineering

6.2.1 Data Acquisition

From October 2015 to January 2016, we conduct crowdsourced testing for five mobile appli-
cations with our industrial partners, including UBook, Justforfun, CloudMusic, SE-1800,
and iShopping. We briefly describe the five mobile applications as follows:

— UBook: an online education application developed by New Orientation.?

— JustForFun: a photo sharing application developed by Dynamic Digit.

— CloudMusic: a music playing and sharing application developed by NetEase®.
— SE-1800: an electrical monitoring application developed by Panneng.

— iShopping: an online shopping guideline App developed by Alibaba!©.

We recruit 352 workers which are composed of students from different universities
through the Kikbug crowdsourced platform to perform crowdsourced testing for the five
applications. These students all have experience in using the Kikbug platform. They have
once completed at least one historical crowdsourced test task through the platform and sub-
mitted valid test reports validated by developers. In our experiments, only 321 students
submit test reports for the five applications.

For each application, we prescribe the test time to be 2 weeks. Workers need to install a
small application on their Android devices, which is used to write and deliver test reports.
Workers design appropriate test steps and perform test tasks according to the test require-
ments defined by developers. Once a bug is detected, workers are required to fill in some
information for forming a test report in the small application. They need to use some
descriptive text information to describe the observed abnormal behavior and record the
detailed test steps for reproducing the bug. Sometimes, workers can add some screenshots
to display the concrete phenomenon when the bug occurs. Meanwhile, the application can
automatically capture the configuration of the mobile device. Eventually, a complete test
report is generated and delivered to the platform through the small application.

6.2.2 Data Validation

When all the test reports are delivered to the platform, developers need to manually evalu-
ate these test reports and give some economic compensation based on their quality. In our
experiments, 15 developers take charge of the evaluation of test reports for the five applica-
tions. Each application involves 3 developers. According to the demands from companies,
the evaluation concerns not only the revealed bugs, but also the writing quality of test reports
since the developers think the writing quality greatly influences the inspection efficiency.
Therefore, to ensure the fairness and effectiveness of the evaluation, the developers design
a series of criteria which are presented in Table 3. First, each test report is scored by three
developers on a scale of 100 based on the criteria. Then, the average score is calculated. If
the average score of a test report exceeds 60 (which is an empirical value determined by
those developers), the developers believe that the test report is well-written and the worker
should be given some economic compensation.

In this study, we also select 60 as the threshold value to label test reports to form the
ground truth. That is, if the average score of a test report is greater than 60, it is marked as

8http://www.pgyer.com/y44v
9http://music.163.com
10https://guang.taobao.com

@ Springer

http://www.pgyer.com/y44v
http://music.163.com
https://guang.taobao.com

Empirical Software Engineering

Table 3 The scoring criteria for evaluating test reports

No. Item Score

1 Whether a test report reveals a true If yes, +10 points (bug), +5
bug, or whether it is related to points (user experience or func-
user experience or function require- tion requirements); otherwise, +0
ments. points. If a test report does not

reveal a true bug or is not related to
user experience or function require-
ments, the developers do not need
to continue the evaluation.

2 Whether the revealed bug is related If yes, +5 points; otherwise, +0
to the corresponding test require- points.
ment.

3 Test description: (1) the level of +1-10 points; +1-10 points; +1-5
detail; (2) the level of expertise; (3) points;
readability.

4 Test input: (1) whether the input is If yes, +10 points; otherwise, +0
related to test steps; (2) the level of points; +1-10 points; +1-10 points;
detail; (3) the level of expertise; (4) +1-5 points.
readability.

5 Test output: the number of screen- =0, +0 points; =1, +5 points; >=2,
shots +10 points.

6 Test environment: whether a test If yes, +10 points; otherwise, +0
report contains environment infor- points.
mation.

7 Other information: whether a test If yes, +5 points; otherwise, +0

report contains other information

points.

such as video, audio.

Note: The level of expertise evaluates whether test reports contain some technical terms or domain terms

“Good”; otherwise, it is marked as “Bad”. There are two main reasons. First, 60 may be a
good threshold value to distinguish the quality of test reports based on both the experience
of developers and the actual demand of companies. Second, the number of low-quality test
reports outperforms that of high-quality test reports by an observation on the five datasets.
Based on the evaluated results of test reports, we find that the average scores of many
test reports are 0. These test reports are invalid test reports which actually describe cor-
rect behaviors or behaviors that are incurred by third-party software applications (Feng
et al. 2015). However, invalid test reports may contain some information (such as test steps,
environment, screenshot) but lack bug description information, which may influence the
effectiveness of TERQAF. Fortunately, some researchers have conducted extensive studies
to identify invalid test reports and developed state-of-the-art techniques with up to 99% in
terms of identification accuracy (Wang et al. 2016). Therefore, in this study, we remove
these invalid test reports from the five datasets straightforwardly.

We collect five datasets including 443, 291, 348, 408, and 238 test reports. 792 invalid
test reports are removed and thus the numbers of the retained test reports in the five datasets
are 201, 230, 201, 215, and 89, respectively. The detailed statistical information of the used
datasets is presented in Table 4. Where #R represents the number of test reports, #B is the
number of revealed bugs in the dataset, R,, denotes the number of multi-bug test reports,
R, and Rj, are the numbers of good and bad quality test reports, respectively. As shown in

@ Springer

Empirical Software Engineering

Table 4 Five crowdsourced test report datasets

Dataset Version #R #B R, #R, #R),
UBook 2.1.0 201 30 53 89 122
JustForFun 1.8.5 230 25 55 92 138
SE-1800 2.5.1 201 32 35 43 158
iShopping 2.5.1 215 65 28 35 180
CloudMusic 1.3.0 89 21 8 47 42

Totals 936 173 179 306 630

the table, the five datasets include 89, 92, 43, 35, and 47 good quality test reports, and 122,
138, 158, 180, and 42 bad quality test reports, respectively.

6.3 Evaluation Metrics

In practice, test report quality assessment can be regarded as a binary classification prob-
lem. Precision, recall, and F-measure are the most frequently used metrics for evaluating the
performance of automated classification techniques in binary classification problems. Pre-
cision measures the correct degree of the predicted results by comparison with the ground
truth, recall evaluates the level of consistency between the predicted results and the ground
truth, and F-measure is the tradeoff between precision and recall.

However, different from generic binary classification problems, this task distinguishes
not only good test reports, but also bad test reports. That is, both good test reports and bad
test reports can be viewed as positive samples. Only calculating the precision, recall, and
F-measure for one classification (e.g., good test reports) cannot reflect the effectiveness
of TERQAF on the other classification. Therefore, we adopt the widely used evalua-
tion metrics for multi-classification problems, namely Macro-average Precision (MacroP),
Macro-average Recall (MacroR), and Macro-average F-measure (MacroF) (Aceto et al.
2018), to evaluate the effectiveness of TERQAF. We first calculate the local result of each
classification and then achieve the global result by averaging the results of all the classifi-
cations. Assuming that G = {G1, G,} and P = { P, P,} represent the predicted results and
the ground truth, respectively, and G; (i = 1, 2) corresponds to P;(j = 1, 2). The formulas
for MacroP, MacroR, and MacroF are presented as follows:

M P== 5
acro Z TP+ FP)
1 o TP
MacroR=-y ———1 6
acroft == Z TP + FN, ©

2x MacroP x MacroR
MacroF = @)
MacroP + MacroR

where c is the number of classifications, 7' P; is the number of test reports belonging to both
G; and P;, F'P; is the number of test reports belonging to both non-G; and P;, and FN; is
the number of test reports belonging to both G; and non-P;.

@ Springer

Empirical Software Engineering

7 Experimental Results

In this section, we investigate four research questions to validate the performance of
TERQAF.

7.1 Investigation into RQ1

Motivation For this framework (namely TERQAF) to be useful, one of the important ques-
tions is how effective the framework is in performing its prediction and whether it can
outperform baseline methods. Since to the best of our knowledge this study is the first work
to investigate the quality of test reports, no state-of-the-art technique is available to validate
the effectiveness of TERQAF. As mentioned in the previous section, test reports are similar
to bug reports, techniques for bug report quality assessment may be suitable to test reports.
Hence, we select CUEZILLA (Zimmermann et al. 2010) as a baseline for comparison. In
addition, we also select one preliminary method, the Random method, as a comparative
method to validate the effectiveness of TERQAF.

CUEZILLA is an effective method for predicting the quality of bug reports. It measures
the quality of bug reports based on the contained field information. CUEZILLA defines
seven desired features to characterize good-quality bug reports and scores each feature with
either binary or continuous values to form a feature vector.

Approach In our study, given that test reports contain no code samples, stack traces, and
patches, we only leverage itemizations, keyword completeness, readability, and screenshots
to measure the quality of test reports. Notably, keyword completeness includes five indica-
tors, i.e., action items, expected and observed behaviors, steps to reproduce, build-related,
and user interface elements. Thus, each feature vector consists of eight components. We also
adopt leave-one-out cross validation to predict the results. In this experiment, we employ
the same classifier (used by TERQAF) to predict the quality of test reports for CUEZILLA.
The Random method randomly predicts a test report as either “Good” or “Bad” with respect
to the quality.

Results Taking the nature of the Random method, we independently run it 20 times and
calculate the average results. Table 5 presents the experimental results of different methods
over the five datasets. As shown in the table, TERQAF outperforms CUEZILLA and Ran-
dom in terms of MacroR and MacroF over all the datasets, and in terms of MacroP over
the UBook, iShopping, and CloudMusic datasets. For example, TERQAF achieves 84.54%
in terms of MacroP, 77.82% in terms of MacroR, and 81.04% in terms of MacroF, and

Table 5 Experimental results of different methods over all datasets

Dataset TERQAF CUEZILLA Random

MacroP MacroR MacroF MacroP MacroR MacroF MacroP MacroR MacroF

UBook 8454 % 77.82% 81.04% 72.94% 68.94% 70.88% 49.60% 49.52% 49.55%
JustForFun 78.01 % 82.49% 80.19% 79.60% 7893 % 79.26% 50.08% 50.10% 50.09%
SE-1800 87.10% 7590% 81.12% 81.78% 74.67% 80.70% 50.08% 50.09% 50.08%
iShopping 89.59% 66.75% 76.50% 8431 % 66.17% 74.14% 49.35% 48.99% 49.17%
CloudMusic 86.65% 7638 % 81.19% 8436% 7424% 7898 % 50.56% 50.63% 50.60%

@ Springer

Empirical Software Engineering

improves CUEZILLA by 11.61%, 8.89%, and 10.16%, and Random by 34.94%, 28.30%,
and 31.49% over the UBook dataset, respectively. The potential reason is that CUEZILLA
only defines several indicators to evaluate the quality of test reports, thus its performance is
easily influenced by one or more indicators. For example, if test reports do not (or a few of
test reports) contain the terms related to these indicators defined by CUEZILLA, the perfor-
mance of CUEZILLA tends to be poor. In addition, CUEZILLA does not define an indicator
to measure the environment information that is also important. Comparatively, CUEZILLA
has high MacroP but relatively low MacroR over all datasets. For example, CUEZILLA
achieves 84.31% in terms of MacroP and 66.17% in terms of MacroR. Similarly, TERQAF
achieves better results in terms of MacroP and relatively low results in terms of MacroR over
all the datasets but JustForFun. Surprisingly, CUEZILLA achieves better results in terms of
MacroP than that of TERQAF over the JustForFun and SE-1800 datasets. The reason may
be that test reports in these two datasets contain no terms related to some indicators, thus
some indicators may be ineffective. For example, we observe that a few test reports in these
two datasets contain relevant terms of the lexical indicators. In addition, Random works
poorly in test report quality assessment. It achieves approximate results in terms of MacroP,
MacroR, and MacroF over the five datasets.

Conclusion TERQAF achieves good results in terms of MacroP, MacroR and MacroF
over all datasets. TERQAF significantly outperforms both CUEZILLA and Random in
predicting the quality of test reports.

7.2 Investigation into RQ2

Motivation For the task of test report quality assessment, the classifier plays an important
role to decide the performance of TERQAF. In this study, we apply logistic regression to
train the classifier. Besides, Support Vector Machine (SVM) and Naive Bayes (NB) are also
classic efficient machine learning algorithms in precessing small-scale data. In this RQ, we
attempt to investigate whether logistic regression can outperform SVM and NB. In addition,
we also validate whether logistic regression can improve the unsupervised method proposed
in the previous study (Chen et al. 2018).

In the study (Chen et al. 2018), we apply step transformation functions to transform the
nominal values of indicators into numerical values and adopt 60% of indicators with good
results to determine the quality of test reports.

Approach In this experiment, we fully follow the unsupervised method (Chen et al. 2018)
to build the classifier and adopt the same parameters. In order to facilitate representation, we
represent the previous proposed method as TERQAF-UN. In addition, we replace logistic
regression with SVM and NB to train the classifier in the third component, respectively, and
keep other components unchanged. Similarly, we represent the two methods as TERQAF-
SVM and TERQAF-NB. We also adopt MacroP, MacroR, and MacroF as the evaluation
metrics.

Results Table 6 presents the experimental results of different methods in terms of MacroP,
MacroR, and MacroF on the five datasets. As shown in the table, for the average results,
we can observe that TERQAF outperforms other methods in terms MacroP, MacroR, and
MacroF. In addtion, TERQAF can obtain better results than TERQAF-UN, TERQAF-SVM,
and TERQAF-NB in terms of MacroF on the JustForFun, SE-1800, and iShopping datasets.
For example, TERQAF achieves 80.19% in terms of MacroP on the Justforfun dataset and

@ Springer

Empirical Software Engineering

%IL 6L %19°8L %56°08 %98°SL %99°1L %80°18 %01 LL WYL YL %5908 %1008 %LYSL %81°68 oereny
%9E 1L %¥9°'L9 %BIS'SL %ITSL %I8TL WBLLLL %9¢°S8 %BIE Y %t 98 %6118 %8E9L %59'98 SISNAIPIOLD
%9ETL %S0°€9 %0678 %BTLSL %TY'LY %6L'¥8 %ISIL %TEOL %ELTL %0S°9L %SL'99 %6568 Surddoygr
%S8'LL %9€TL %YT ¥ %BTT YL %TLOL %T8'8L %66'8L %8E YL %TTH8 %TI'18 %06°'SL %01°L8 0081-dS
%86'SL %LYLL %9 ¥L %90°LL %98°6L auadh %1¥'8L %LLOS %81°9L %61°08 %6¥'C8 %10°8L ungiopsny
%EL'T8 %9S"LL %6€'98 %0%'S8 %8%'€8 %1¥'L8 %6T 78 %I1¥€8 %61°68 %018 %TY'LL %¥S 78 joodn
JOIoRIN JOIoRN JOIdRIN JOIoRIN JOIRN JOIoRIN HJOIoRN JOorrN JOIoRN JOIoRIA JOoIrN JOIoRN

AN-dVOJdL NAS-AVOYdL NN-dvVOJdL AVO¥dL 1aseIRq

S}[Nsa1 [euawIadXa UO SIOJBJIPUI JO SALI0SILd JUAIIp Jo Joedw 9 3|qel

pringer

N

Empirical Software Engineering

improves TERQAF-UN, TERQAF-SVM, and TERQAF-NB by 1.78%, 3.13%, and 4.21%,
respectively. The corresponding MacroP and MacroR are 78.01% and 82.49%, respectively.
Similarly, in terms of MacroP and MacroR, TERQAF outperforms other methods on most
of the datasets.

Compared with TERQAF, TERQAF-SVM, and TERQAF-NB, the differences between
MacroP and MacroR achieved by TERQAF-UN are very small on all the datasets. For
example, the difference between MacroP and MacroR achieved by TERQAF-UN on the
UBook dataset is 1.78%, but the differences between MacroP and MacroR achieved by
TERQAF, TERQAF-SVM, and TERQAF-NB are 6.72%, 3.93%, and 8.83%, respectively.
Especially, there are big differences between MacroP and MacroR achieved by TERQAF,
TERQAF-SVM, and TERQAF-NB on the iShopping dataset. From this point of view,
TERQAF-UN may be more suitable for test report quality assessment without considering
the additional effort for parameter tuning. In addition, TERQAF-SVM ahieves better results
than TERQAF-NB on most of the datasets.

Conclusion Logistic regression is more suitable for training the classifier than SVM and
NB in predicting the quality of test reports. Meanwhile, logistic regression outperforms the
original method proposed in our previous study.

7.3 Investigation into RQ3

Motivation In this study, we define a taxonomy of indicators based on the contained con-
tents for test report quality measurement and classify them into four categories. These
indicators can evaluate test reports from different but complementary aspects. They may
have different impacts on the effectiveness of TERQAF in predicting the quality of test
reports. Meanwhile, we are unclear whether each category has a positive impact on
TERQAF in test report quality assessment and what is the most important category. In this
RQ, we mainly focus on investigating the effect of each category of indicators in test report
quality assessment and analyzing the degree of importance of each category of indicators.

Approach In general, to validate the role of one category of indicators, we should directly
adopt all the relevant indicators belonging to this category to independently measure test
reports. However, each category only contains three or four indicators. The previous exper-
iment has demonstrated that the predicted results are easily influenced by one or several
indicators when using a small number of indicators for test report quality assessment. Con-
sequently, based on a reversed ideal, we can adopt the other three categories of indicators
to indirectly reflect the effect of one category in evaluating the quality of test reports.
In this experiment, we adopt the same parameter settings. In order to facilitate represen-
tation, we produce four variants of TERQAF, namely TERQAF-LAR, TERQAF-MAR,
TERQAF-MLR, and TERQAF-MLA, where M, L, A, and R denote the morphological,
lexical, analytical, and relational indicators, respectively.

Results We present the experimental results of different categories of indicators over the
five datasets in Table 7. By an observation on the results in Tables 5 and 7, we find that
TERQAF achieves better results than TERQAF-MAR, TERQAF-MLR, and TERQAF-
MLA in terms of MacroP, MacroR, and MacroF over all datasets. For example, compared
with TERQAF-MAR, TERQAF-MLR, and TERQAF-MLA, TERQAF achieves 1.40%,
4.18%, and 16.27% improvement in terms of MacroP, 3.03%, 3.92%, and 14.80% improve-
ment in terms of MacroR, and 2.34%, 4.05%, and 15.50% improvement in terms of MacroF

@ Springer

Empirical Software Engineering

%69°'S9 %8519 %8€ 0L %Y1 LL %Y TL %LY'C8 %8L°08 %00°LL %16 +8 %S8'8L %SEEL %ST'S8 SISNAIPIOLD
%¥LLY %SE€ 65 %88°8L %9TEL %EL'LY %T9°08 %LS'SL %16'S9 %1S 88 %80°7L %10°L9 %T8'C8 Surddoygsrt
%0509 %T0'CS %BLTTL %LS 9L %LLOL %6€ €8 %TL'18 %06°SL %01°L8 %0808 %01°SL %YL 98 0081-dS
%YL %01°69 %8599 %SY YL %81°CTL %88°9L %61°08 %6¥'T8 %10°8L %S9°LL %08 LL %I8LL ungiopsnf
%0€vL %8L'89 %8L°08 %ST'SL %S8°L9 %1TH8 %8L'T8 %BLL'8L %10°S8 %LT 08 %LTIL %0L ¥8 yood
JOIoRIA JoIorN JOIoRIN JOIoRIA JOIRA JOIoRIN JOIoRIN JOoIorN JOIoRIN JOIoRIA JorrN JOoIoRN

VIN-AVOYdL Y TN-IVOIdL AVIN-IVOIAL AVTAVOIdL 1eseIRq

S)[NSaI [ejuaWLIAd X UO SIOJBJIPUT JO SALI0FED JUAIJIp Jo 1oedwy /£ 3|qel

pringer

N

Empirical Software Engineering

over the CloudMusic dataset, respectively. In addition, TERQAF outperforms TERQAF-
LAR in terms MacroF over the iShopping and CloudMusic datasets, but TERQAF-LAR
outperforms TERQAF in terms of MacroF over the UBook dataset. To explain the poten-
tial reason, we perform an investigation on the ground truth. We discover that 21, 36, 29,
31, and 11 test reports in the five datsets contain the related terms of the lexical indicators,
and 13 out of 30 good-quality test reports contain imprecise terms and anaphoric terms over
the UBook dataset, this may introduce a local bias that the indicators imprecise terms and
anaphoric terms are considered as good over this dataset in training the classifier.

Comparatively, TERQAF-MAR outperforms TERQAF-LAR, TERQAF-MLR, and
TERQAF-MLA in terms of MacroF over all datasets, in terms of MacroP but the CloudMu-
sic dataset, and in terms of MacroR but the iShopping dataset. For example, TERQAF-MAR
improves TERQAF-LAR, TERQAF-MLR, and TERQAF-MLA by 0.36%, 3.71%, and
14.83% in terms of MacroP, 0.80%, 5.13%, and 23.88% in terms of MacroR, and 0.62%,
4.55%, and 20.62% in terms of MacroF over the SE-1800 dataset, respectively. The results
directly reflect that the lexical indicators work poorly in test report quality assessment. In
contrast, TERQAF-MLA achieves the poorest results in terms of MacroP, MacroR, and
MacroF over most of the datasets, which demonstrates that the relational indicators are the
most important. In addition, although the performance of TERQAF-MLR is approximate to
that of TERQAF-LAR, TERQAF-LAR achieves better results than TERQAF-LAR in terms
of MacroF, MacroR, and MacroF over all the datasets but iShopping, which indicates that
the analytical indicators are more important than the morphological indicators.

Conclusion Different categories of indicators have different effects on TERQAF in eval-
uating the quality of test reports. The most important category is the relational indicators
and the poorest category is the lexical indicators. Comparatively, the role of the analytical
indicators is slightly better than that of the morphological indicators.

7.4 Investigation into RQ4

Motivation Although a series of indicators are defined to measure the quality of test
reports, we are unclear about which indicators are mainly concerned by developers when
evaluating test reports. In this RQ, we attempt to investigate the degree of importance of
each indicator and validate whether the indicators are effective in a real scenario by manual
evaluation.

Approach In this experiment, we invite 15 developers from the five companies (each com-
pany includes 3 developers). They are very familiar with these mobile applications and
acknowledge test reports. Due to the cooperative relationship, the developers are willing to
conduct a manual evaluation. For each indicator, we give the concrete definition and explain
how it measures the quality of test reports in detail. First, each developer scores each indica-
tor on a scale of 5 points according to the importance degree in evaluating test reports. Then,
the average score of each indicator is calculated by the obtained results. Finally, we rank
the indicators in a descending order based on the average scores. In practice, this evalua-
tion procedure is simple, thus developers only take about 10 minutes to complete the whole
evaluation.

Results The results of manual evaluation are presented in Fig. 3, where the connect lines

connects the fields an indicator can evaluate, “score” is the average score of the 15 devel-
opers, and “std” represents the standard deviation of the scores. As shown in the figure,

@ Springer

Empirical Software Engineering

tion tems

Fig.3 The results from developers for each indicator

8 indicators are used to evaluate the input and the description. In contrast, only one indicator
is used to measure the screenshot and the environment. According to the results, we observe
that the most important indicator is itemization which obtains 4.67 scores. The potential
reason is that this indicator is directly related to test steps which are the most important
information for reproducing the bugs. Therefore, the indicators action terms and interface
elements also gain high scores since they directly reflect whether the input is associated
with test steps. The indicators size, negative terms, and behavior terms mainly evaluate the
description and obtain relatively high scores. In contrast, the indicators imprecise terms,
punctuation, readability, and anaphoric terms receive low scores. This may be because test
reports contain a small number of imprecise and anaphoric terms. Meanwhile, the readabil-
ity of test reports is generally good and developers are familiar with Chinese grammars.
Therefore, the indicator readability is not concerned by developers. Also, the sentence
length is often acceptable in test reports, thus developers do not care about the indicator
punctuation. In addition, we observe that the indicator environment has the maximum stan-
dard deviation 1.0142, followed by the indicator screenshot. The main reason is that some
developers think the environment and screenshots are important because these information
can help them acknowledge the adaptability of the system and the abnormal behaviors, but
other developers think these information is negligible in fixing bugs. Similarly, the indica-
tors directive terms, action terms, behavior terms, and imprecise terms obtain high standard
deviation.

Conclusion. The most important indicators are itemization, size, action terms, and inter-
face elements. Other indicators, such as imprecise terms, punctuation, readability, and
anaphoric terms, play weak roles in test report quality assessment.

8 Threats to Validity

In this section, we discuss the threats to validity from three aspects, including internal
validity, external validity, and construct validity.

@ Springer

Empirical Software Engineering

8.1 Internal validity

Term lists. In TERQAF, some indicators (e.g., imprecise terms and directive terms) rely on
term lists to measure the quality of test reports. However, it is hard to obtain the overall term
lists, especially domain terms, which may have an impact on the effectiveness of TERQAF
in our experiments. Fortunately, many studies about quality assessment have summarized
overall term lists which are reused in other studies. We also reuse these term lists by trans-
lating them into Chinese and add some relevant terms by leveraging the thesaurus. Thus, the
ultimately used term lists are relatively complete. In such a way, the impact can be greatly
reduced.

8.2 External validity

Natural Language Selection In our experiments, test reports are written in Chinese and
most of the indicators are defined based on the Chinese text. Admittedly, there is a big
gap between Chinese and English as well as other Latin languages, which may produce
a bias to TERQAF in different natural languages. However, NLP techniques have been
widely adopted to process documents written in different languages, we only need to choose
appropriate processing steps and NLP tools. Meanwhile, even though some indicators are
designed based on Chinese text, they derive from existing related studies and have been
proven to adapt to English documents. Therefore, this bias is negligible.

Manual Evaluation In the experiments, we invite 15 developers to conduct manual valida-
tion for the defined indicators and 5 developers to complete the reproduction. Due to the
experience and subjectivity, threats may be introduced to evaluation results. However, these
developers have rich experience of software development and are familiar with the five
applications and test reports. Also, reproduction tasks are simple and the developers only
need exactly follow test steps to reproduce bugs. In addition, we list detailed criteria for the
manual evaluation and bug reproduction. Therefore, this threat can be minimized.

8.3 Construct validity

Property Selection To measure the quality of test reports, we select some desirable prop-
erties to characterize expected test reports. However, no study is conducted to investigate
what are the real desirable properties for developers, which may threaten the validity of this
study. Actually, given that test reports are similar to bug reports, the desirable properties of
bug reports are also adaptive to test reports. By investigating many studies related to bug
reports, we summarize some desirable properties to characterize test reports. Although there
may be some other properties, to the best of our knowledge, the selected properties in this
study are more important. Therefore, this threat can be significantly reduced.

Indicator Selection In TERQAF, we define a series of quantifiable indicators which are
classified into four categories. There may be some other indicators that can be used to mea-
sure the quality of test reports, this may produce a bias to the effectiveness of TERQAF. In
practice, Génova et al. (2013) defined more indicators to measure the quality of requirement
specifications and validated their effectiveness. We select some indicators which are adap-
tive to evaluate the quality of test reports and are related to the criteria which the developers
adopted to score test reports. In addition, we also add some new indicators according to the
characteristics of test reports. Therefore, the bias will be minimized.

@ Springer

Empirical Software Engineering

Besides, we construct the relationship between the desirable properties and the measur-
able indicators based on existing studies (Génova et al. 2013) and our experience. Due to
the experience level, this may be a threat to the validity of TERQAF. In practice, we have
conducted a detailed discussion about this problem and consulted the developers. Mean-
while, the relationship establishment is based on the scoring criteria of test report evaluation.
Therefore, this threat is subtle.

9 Related Work

In this section, we discuss two areas of studies related to our work, namely crowdsouced
testing and quality assessment for textual documents.

9.1 Crowdsourced Testing

The concept of crowdsourcing was first proposed by Howe in 2006, which refers to the act
of an company crowdsourcing their work to a large potentially undefined group of online
individuals in open call (Howe 2006). In general, it combines human and machine power to
resolve problems (Mao et al. 2015). Due to the high efficiency and low cost (Guaiani and
Muccini 2015), crowdsourcing has been widely applied to software testing activities.

As a newly emergent technique, many studies have been conducted to investigate the
potential of crowdsourced testing. For example, an empirical investigation showed that
crowdsourced testing can compensate traditional laboratory testing (Guaiani and Muccini
2015). Leicht et al. conducted two case studies to reveal the advantages of crowdsourced
testing (2016). Compared with traditional in-house testing, crowdsourced testing can bring
many advantages in terms of speed, cost, and user feedback. In contrast, some studies
focus on resolving software engineering problems by applying crowdsourced testing (Dol-
stra et al. 2013; Liu et al. 2012). For example, Wu et al. presented a new framework which
adopted crowdsourcing to quantify the QoE of multimedia content. The framework can
support cheat detection and simplify the rating procedure (Wu et al. 2013). Gomide et al.
proposed an events detection algorithm to support crowdsourcing software usability test-
ing. It leverages human-computer interfaces to identify users emotions by processing user’s
actions from mouse movements or touch events (Gomide et al. 2014). Given that the GUI
testing is costly and time-consuming, Vliegendhart et al. recruited hundreds of workers
to perform A/B testing for a multimedia application through the Amazon’s crowdsourcing
platform Mechanical Turk (2012). In addition, some studies introduce crowdsourced test-
ing to mobile applications (Gao et al. 2018). Zhang et al. provided a systematical tutorial
for mobile application testing and detailed the obvious difference between crowdsourced
testing and traditional lab-based mobile testing (Zhang et al. 2017).

Some studies attempt to resolve the problems existing in crowdsourced testing (Chen and
Luo 2014; Starov 2013; Chen et al. 2019). To select appropriate workers for testing, Cui
et al. presented a multi-objective crowd worker selection approach which aims to maximize
the coverage of test requirement and bug-detection experience, and minimize the cost (Cui
et al. 2017). Taking the poor performance of workers, Zhang et al. proposed an approach to
help workers to acquire domain knowledge and guide them to complete test tasks (Zhang
et al. 2016). To help developers identify more bugs when detecting a given number of test
reports, Feng et al. attempted to resolve test report prioritization by leveraging textual infor-
mation and screenshots (Feng et al. 2015; Feng et al. 2016). Given that false positive test
reports will take developers unnecessary time, Wang et al. adopted text-based classification

@ Springer

Empirical Software Engineering

approaches (Wang et al. 2016; 2017) and machine learning techniques (Wang et al. 2016)
to identify them from a large number of test reports. Under the motivation of reducing the
inspection cost, Jiang et al. developed a new framework to partition test reports into clus-
ters in which test reports in one cluster detail the same bug (Jiang et al. 2018). In addition,
to help developers determine the severity lever of test reports, Guo et al. proposed a knowl-
edge transfer classification technique which leverages similar information contained in bug
reports (Guo et al. 2017). Different from the above studies, this study aims to evaluate the
quality of test reports to help developers select high-quality test reports for inspection, thus
accelerating inspection efficiency.

9.2 Quality Assessment for Textual Documents

Quality is an ambiguous concept which is related to individually subjective judgements.
Given a textual document, different users may have different opinions about the quality.
In literature, researchers have conducted many studies to investigate the quality of textual
documents, such as bug reports and requirement specifications.

In software maintenance, bug report resolution is one of the most important tasks (Nazar
et al. 2016). However, the quality has a great impact on the inspection efficiency of bug
reports. Motivated by this, researchers have conducted extensive studies to investigate the
quality of bug reports. Zimmermann et al. (2010) performed an investigation about what
makes a good bug report. They revealed that there exists a serious mismatch between what
developers need and what users provide. An effective tool named CUEZILLA was devel-
oped to quantify the quality of bug reports by extracting domain features to detect the
contained information (Zimmermann et al. 2010; Bettenburg et al. 2008). To help devel-
opers determine which bug reports can be selected for inspection, Hooimeijer and Weimer
defined some external features based on the surface characteristics of text to build a descrip-
tive model to measure the quality of bug reports (2007). Given the lengthy text contained in
bug reports, some studies attempted to extract important and informative sentences to gen-
erate short summary information, thus improving the inspection efficiency of bug reports
for developers (Rastkar et al. 2014). In addition, some studies focus on the effect of dupli-
cate bug reports. For example, Bettenburg et al. conducted an empirical investigation on
duplicate bug reports (2008). They pointed out that duplicate bug reports usually provided
additionally useful information for developers to understand and fix the bug more effi-
ciently. Thus developers should aggregate them to produce an extended bug report rather
than discarding them straightforwardly. Perry pointed out what testers should concern when
delivering good test reports and presented the detailed workbench for reporting test results
(2006). Another study was conducted to characterize quality standards about reporting of
test results, thus ensuring that the reported results will be properly understood (None 2014).

In requirement engineering, requirement specifications play an important role in guar-
anteeing the overall quality of software. A great amount of effort is devoted to generate
and refine requirement specifications (Heck and Zaidman 2016). Therefore, timely detect-
ing the erroneous requirements can avoid serious problems, such as spending significant
additional costs or failing to satisfy the expected demands. However, manual quality assess-
ment for requirement specifications is tedious and time-consuming. Under this motivation,
some researchers try to explore automated techniques and tools to help developers perform
the quality assessment for requirement specifications (Zogaj et al. 2014; Rosenberg and
Hammer 1999). The generic method is to define some quantifiable indicators to measure
the desirable properties of requirement specifications. For example, Génova et al. (2013)
summarized 15 indicators based on the textual contents and document structure to evaluate

@ Springer

Empirical Software Engineering

the 13 desirable properties. Carlson and Laplante (2014) also explored some new indicators
to quantify the quality of specifications and conducted analytical experiments to validate
the distribution of indicators in requirement specifications. Another body of studies focuses
on machine learning. For example, Parra et al. (2015) adopted rule induction techniques to
evaluate the quality of requirement specifications. The experimental results demonstrated
that the proposed method works well in quality assessment. In addition, some studies are
conducted to investigate a single property, such as ambiguities (Kiyavitskaya et al. 2008;
Popescu et al. 2007), inconsistencies (de Sousa et al. 2010), and conflicts (Sardinha et al.
2013).

10 Conclusion

To help developers determine whether a test report can be selected for inspection, this paper
issues a new problem of test report quality assessment and present our attempts towards
resolving this problem by classifying test reports as either “Good” or “Bad”. First, we define
some desirable properties and a taxonomy of indicators for modeling the quality of test
reports. Then, we adopt an efficient Chinese NLP tool to process crowdsourced test reports
and compute the numerical value of each indicator based on the contained contentst. Finally,
a classifier based on logistic regression is trained to predict the quality of test reports. We
conduct extensive experiments over five crowdsourced test report datasets of mobile appli-
cations. The experimental results demonstrate that the proposed method can predict the
quality of test reports with high accuracy.

Besides, this study also provides some suggestions on writing a good test report. For
example, workers should use some domain terms to describe the bug and avoid ambigu-
ous terms as far as possible. The size of test reports should be kept in an acceptable length.
However, the quality assessment of test reports stills depend on the manual judgement of
developers. Nonetheless, this study also plays an auxiliary role in manually performed qual-
ity assessment. In future, we will define more desirable properties and measurable indicators
to quantify the quality of test reports and investigate the concrete effect of each indicator.
Meanwhile, we should collect more test reports to validate the generalizability of TERQAF
in other projects and languages. In addition, we try to design a practicable tool to imple-
ment our method and deploy it in a real scenario, such as the National Student Contest of
Software Testing in China.!!

Acknowledgments We greatly thank the developers who devote their precious time on evaluating and
inspecting the quality of test reports. We would thank José M. Fuentes who provides help for us to conduct
this work. This work is partially supported by the National Key Research and Development Program of China
under grant no. 2018YF-B1003900, and the National Natural Science Foundation of China under Grants No.
61902096, 61972359, 61370144, 61722202, 61403057, and 61772107.

References

Aceto G, Ciuonzo D, Montieri A, Pescape A (2018) Multi-classification approaches for classifying mobile
app traffic. J Netw Comput Appl 103:131-145

http://mooctest.org/

@ Springer

http://mooctest.org/

Empirical Software Engineering

Bettenburg N, Just S, Schroter A, Weiss C, Premraj R, Zimmermann T (2008) What makes a good bug
report? In: Proceedings of the 16th ACM SIGSOFT international symposium on foundations of software
engineering, ser. FSE’08. ACM, pp 308-318

Bettenburg N, Premraj R, Zimmermann T, Kim S (2008) Duplicate bug reports considered harmful... really?
In: 24th IEEE international conference on software maintenance, ser. ICSM’08, pp 337-345

Carlson N, Laplante PA (2014) The NASA automated requirements measurement tool: a reconstruction.
ISSE 10(2):77-91

Chen Z, Luo B (2014) Quasi-crowdsourcing testing for educational projects. In: Companion proceedings of
the 36th international conference on software engineering, ser ICSE’14. ACM, pp 272-275

Chen X, Jiang H, Li X, He T, Chen Z (2018) Automated quality assessment for crowdsourced test reports of
mobile applications. In: 25th international conference on software analysis, evolution and reengineering,
SANER 2018, Campobasso, Italy, March 20-23, 2018. IEEE, pp 368-379

Chen X, Jiang H, Chen Z, He T, Nie L (2019) Automatic test report augmentation to assist crowdsourced
testing. Frontiers of Computer Science (print)(5)

Cui Q, Wang S, Wang J, Hu Y, Wang Q, Li M (2017) Multi-objective crowd worker selection in crowdsourced
testing. In: The 29th international conference on software engineering and knowledge engineering,
Wyndham Pittsburgh University Center, Pittsburgh, PA, USA, July 5-7, 2017, pp 218-223

de Sousa TC, Almeida JR Jr, Viana S, Pavon J (2010) Automatic analysis of requirements consistency with
the B method. ACM SIGSOFT Software Engineering Notes 35(2):1-4

Denoeux T (2018) Logistic regression revisited: Belief function analysis. In: Belief functions: theory and
applications - 5th international conference, BELIEF 2018, Compiégne, France, September 17-21, 2018,
Proceedings, pp 57-64

Dolstra E, Vliegendhart R, Pouwelse JA (2013) Crowdsourcing gui tests. In: Sixth IEEE international
conference on software testing, verification and validation, ser. ICST’13. IEEE, pp 332-341

Feng Y, Chen Z, Jones JA, Fang C, Xu B (2015) Test report prioritization to assist crowdsourced testing.
In: Proceedings of the 10th Joint Meeting on Foundations of Software Engineering, ser. ESEC/FSE’15.
ACM, pp 225-236

Feng Y, Jones JA, Chen Z, Fang C (2016) Multi-objective test report prioritization using image understand-
ing. In: Proceedings of the 31st IEEE/ACM international conference on automated software engineering,
ser ASE’16. ACM, pp 202-213

Flesch R (1948) A new readability yardstick. Journal of Applied Psychology 32(3):221

Gao R, Wang Y, Feng Y, Chen Z, Wong WE (2018) Successes, challenges, and rethinking — an industrial
investigation on crowdsourced mobile application testing. Empir Softw Eng 2:1-25

Génova G, Fuentes JM, Morillo JL, Hurtado O, Moreno V (2013) A framework to measure and improve the
quality of textual requirements. Requir Eng 18(1):25—41

Gomide VH, Valle PA, Ferreira JO, Barbosa JR, Da Rocha AF, Barbosa T (2014) Affective crowdsourcing
applied to usability testing. Int J Comput Sci Inf Technol 5(1):575-579

Guaiani F, Muccini H (2015) Crowd and laboratory testing, can they co-exist? an exploratory study. In:
2nd IEEE/ACM international workshop on crowdsourcing in software engineering, ser. CSI-SE’15.
ACM/IEEE, pp 32-37

Guo S, Chen R, Li H (2017) Using knowledge transfer and rough set to predict the severity of android test
reports via text mining. Symmetry 9(8):161

Guo W (2010) Research on readability formula of chinese text for foreign students. Ph.D. dissertation,
Shanghai Jiao Tong University

Heck P, Zaidman A (2016) A systematic literature review on quality criteria for agile requirements
specifications. Softw Qual J: 1-34

Férnandez HJ (1959) Medidas sencillas de lecturabilidad. Consigna (214):29-32

Hooimeijer P, Weimer W (2007) Modeling bug report quality. In: 22nd IEEE/ACM international conference
on automated software engineering (ASE 2007), ser ASE’07. ACM, pp 34-43

Howe J (2006) The rise of crowdsourcing. Wired Magazine 14(6):1-4

Hsu H, Chang YI, Chen R (2019) Greedy active learning algorithm for logistic regression models.
Computational Statistics & Data Analysis 129:119-134

Jiang H, Chen X, He T, Chen Z, Li X (2018) Fuzzy clustering of crowdsourced test reports for apps. ACM
Trans Internet Techn 18(2):18:1?18:28

Jiang H, Zhang J, Li X, Ren Z, Lo D (2016) A more accurate model for finding tutorial segments explaining
apis. In: IEEE 23rd international conference on software analysis, evolution, and reengineering, SANER
2016, Suita, Osaka, Japan, March 14-18, 2016, vol 1, pp 157-167

Joorabchi ME, MirzaAghaei M, Mesbah A (2014) Works for me! characterizing non-reproducible bug
reports. In: 11th working conference on mining software repositories, MSR 2014, Proceedings, ser.
MSE?14, pp 62-71

@ Springer

Empirical Software Engineering

Kiyavitskaya N, Zeni N, Mich L, Berry DM (2008) Requirements for tools for ambiguity identification and
measurement in natural language requirements specifications. Requir Eng 13(3):207-239

Ko AJ, Myers BA, Chau DH (2006) A linguistic analysis of how people describe software problems. In:
2006 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC 2006), ser.
VL/HCC?06. IEEE Computer Society, pp 127-134

Leicht N, Knop N, Miiller-Bloch C, Leimeister JM (2016) When is crowdsourcing advantageous? the case
of crowdsourced software testing. In: 24th European conference on information systems, ECIS 2016,
Istanbul, Turkey, June 12-15, 2016, p Research Paper 60

Liu D, Lease M, Kuipers R, Bias RG (2012) Crowdsourcing for usability testing. American Society for
Information Science and Technology 49(1):332-341

Liu Z, Gao X, Long X (2010) Adaptive random testing of mobile application. In: International conference
on computer engineering and technology, pp V2-297 — V2-301

Mao K, Capra L, Harman M, Jia Y (2015) A survey of the use of crowdsourcing in software engineering.
RN 15(01)

Nazar N, Jiang H, Gao G, Zhang T, Li X, Ren Z (2016) Source code fragment summarization with small-scale
crowdsourcing based features. Frontiers of Computer Science 10(3):504-517

Nebeling M, Speicher M, Grossniklaus M, Norrie MC (2012) Crowdsourced web site evaluation with crowd-
study. In: Proceedings of 12th International Conference on Web Engineering, ser ICWE’12. Springer,
pp 494-497

None (2014) Itc guidelines on quality control in scoring, test analysis, and reporting of test scores. Int J Test
14(3):195-217

Parra E, Dimou C, Morillo JL, Moreno V, Fraga A (2015) A methodology for the classification of quality of
requirements using machine learning techniques. Information & Software Technology 67:180-195

Perry WE (2006) Effective methods for software testing, 3rd edn. Wiley, Hoboken

Petrosyan G, Robillard MP, Mori RD (2015) Discovering information explaining API types using text clas-
sification. In: 37th IEEE/ACM international conference on software engineering, ICSE 2015, Florence,
Italy, May 16-24, 2015, vol 1, pp 869-879

Popescu D, Rugaber S, Medvidovic N, Berry DM (2007) Reducing ambiguities in requirements specifica-
tions via automatically created object-oriented models. In: Innovations for requirement analysis. From
stakeholders? needs to formal designs, pp 103-124

Rastkar S, Murphy GC, Murray G (2014) Automatic summarization of bug reports. IEEE Trans Software
Eng 40(4):366-380

Rosenberg L, Hammer T (1999) A methodology for writing high quality requirement specifications and for
evaluating existing ones. NASA Goddard space flight center software assurance technology center

Sardinha A, Chitchyan R, Weston N, Greenwood P, Rashid A (2013) Ea-analyzer: automating con-
flict detection in a large set of textual aspect-oriented requirements. Autom Softw Eng 20(1):
111-135

Starov O (2013) Cloud platform for research crowdsourcing in mobile testing. East Carolina University

Thakurta R (2013) A framework for prioritization of quality requirements for inclusion in a software project.
Softw Qual J 21(4):573-597

Vliegendhart R, Dolstra E, Pouwelse J (2012) Crowdsourced user interface testing for multimedia applica-
tions. In: ACM multimedia 2012 workshop on crowdsourcing for multimedia, pp 21-22

Wang J, Cui Q, Wang Q, Wang S (2016) Towards effectively test report classification to assist crowd-
sourced testing. In: Proceedings of the 10th ACM/IEEE international symposium on empirical software
engineering and measurement. ACM, pp 6:1-6:10

Wang J, Cui Q, Wang S, Wang Q (2017) Domain adaptation for test report classification in crowd-
sourced testing. In: 39th IEEE/ACM international conference on software engineering: software
engineering in practice track, ICSE-SEIP 2017, Buenos Aires, Argentina, May 20-28, 2017. IEEE,
pp 83-92

Wang J, Wang S, Cui Q, Wang Q (2016) Local-based active classification of test report to assist crowd-
sourced testing. In: Proceedings of the 31st IEEE/ACM international conference on automated software
engineering, ser ASE’16. ACM, pp 190-201

Wilson W, Rosenberg L, Hyatt L (1996) Automated quality analysis of natural language requirement
specifications in proc. In: Fourteenth annual pacific northwest software quality conference Portland OR

Wu C, Chen K, Chang Y, Lei C (2013) Crowdsourcing multimedia qoe evaluation: a trusted framework.
IEEE Trans Multimed 15(5):1121-1137

Yang S-j (1970) A readability formula for Chinese language. University of Wisconsin-Madison

Zhang T, Gao JZ, Cheng J (2017) Crowdsourced testing services for mobile apps. In: in 2017 IEEE sympo-
sium on service-oriented system engineering, SOSE 2017, San Francisco, CA, USA, April 6-9, 2017,
pp 75-80

@ Springer

Empirical Software Engineering

Zhang X, Chen Z, Fang C, Liu Z (2016) Guiding the crowds for android testing. In: Proceedings of the 38th
international conference on software engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016 -
Companion Volume, pp 752-753

Zimmermann T, Premraj R, Bettenburg N, Just S, Schroter A., Weiss C (2010) What makes a good bug
report. IEEE Trans Software Eng 36(5):618-643

Zogaj S, Bretschneider U, Leimeister JM (2014) Managing crowdsourced software testing: a case study based
insight on the challenges of a crowdsourcing intermediary. Journal of Business Economics 84(3):375—
405

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Xin Chen is currently a Lecturer in School of Computer Science,
Hangzhou Dianzi University. He has received his Ph.D. degree from
Dalian University of Technology in June 2018. His main research
interests include mining software repositories and search based soft-
ware engineering. He is also a member of the ACM and the CCF
(China Computer Federation).

He Jiang received the Ph.D. degree in computer science from the
University of Science and Technology of China, China. He is cur-
rently a Professor in Dalian University of Technology, China. He
is also a member of the ACM and the CCF (China Computer
Federation). He is one of the ten supervisors for the Outstanding
Doctoral Dissertation of the CCF in 2014. His current research inter-
ests include Search-Based Software Engineering (SBSE) and Mining
Software Repositories (MSR). His work has been published at pre-
mier venues like ICSE, SANER, and GECCO, as well as in major
IEEE transactions like TSE, TKDE, TSMCB, TCYB, and TSC.

@ Springer

Empirical Software Engineering

Xiaochen Li received the doctoral degree in software engineering
from the Dalian University of Technology, China in 2019 under
supervision with Prof. He Jiang. He is currently a research associate
at Software Verification and Validation research group in University
of Luxembourg, headed by Prof. Lionel Briand. His current research
interests are intelligent software engineering and software semantic
analysis.

Liming Nie received the Ph.D. degree in Computer Application Tech-
nology from the Dalian University of Technology, Dalian, China, in
2017. He is currently a lecturer with Zhejiang Sci-Tech University,
Hangzhou, China. His current research interests include Intelligent
Software Development, and Intelligent Cyber Systems. Dr. Nie is a
member of the ACM and the CCF.

Dongjin Yu is currently a professor at Hangzhou Dianzi University,
China. His research efforts include intelligence software engineer-
ing, big data, service computing and business process management.
He is the director of Institute of Big Data (IBD) and Institute of
Computer Software (ICS) of Hangzhou Dianzi University. He is a
member of ACM and IEEE, and a senior member of China Computer
Federation (CCF). He is also a member of Technical Committee of
Software Engineering CCF (TCSE CCF) and a member of Technical
Committee of Service Computing CCF (TCSC CCF).

@ Springer

Empirical Software Engineering

@ Springer

Tieke He is currently a research assistant at Software Institute, Nan-
jing University, Nanjing. He got his B.S., M.S. and Ph.D. degrees
in software engineering from Nanjing University, Nanjing, in 2010,
2012, and 2017, respectively. His research interests include recom-
mender systems and knowledge graph.

Zhenyu Chen is a professor at Software Institute, Nanjing University,
Nanjing. He got his B.S. and Ph.D. degrees in mathematics from Nan-
jing University, Nanjing, in 2001 and 2006, respectively. His research
interests include intelligent software engineering and mining software
repositories. He is a member of the CCF and the ACM.

Empirical Software Engineering

Affiliations

Xin Chen' - He Jiang? - Xiaochen Li? - Liming Nie3 - Dongjin Yu' - Tieke He* .
Zhenyu Chen*

He Jiang
jianghe @dlut.edu.cn

Xiaochen Li
111989 @mail.dlut.edu.cn

Liming Nie
Lmn@zstu.edu.cn

Dongjin Yu
yudj@hdu.edu.cn

Tieke He
dg1232002 @smail.nju.edu.cn

Zhenyu Chen
zychen@nju.edu.cn

School of Software, Dalian University of Technology, Dalian, China

School of Software, Nanjing University, Nanjing, China

College of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China

School of Information Science and Technology, Zhejiang Sci-tech University, Hangzhou, China

@ Springer

mailto: jianghe@dlut.edu.cn
mailto: li1989@mail.dlut.edu.cn
mailto: Lmn@zstu.edu.cn
mailto: yudj@hdu.edu.cn
mailto: dg1232002@smail.nju.edu.cn
mailto: zychen@nju.edu.cn

	A systemic framework for crowdsourced test report quality assessment
	Abstract
	Introduction
	Background and Motivation
	Desirable Properties of Test Reports
	Taxonomy of Indicators
	Morphological Indicators
	Size
	Readability
	Punctuation

	Lexical Indicators
	Imprecise Terms
	Anaphoric Terms
	Directive Terms

	Analytical Indicators
	Negative Terms
	Behavior Terms
	Action Terms
	Interface Elements

	Relational Indicators
	Itemizations
	Environment
	Screenshots

	Test Report Quality Assessment Framework
	Preprocessor
	Indicator Extractor
	Classifier
	Logistic Regression
	Training Classifier

	Experimental Setup
	Research Questions
	Data Acquisition and Validation
	Data Acquisition
	Data Validation

	Evaluation Metrics

	Experimental Results
	Investigation into RQ1
	Motivation
	Approach
	Results
	Conclusion

	Investigation into RQ2
	Motivation
	Approach
	Results
	Conclusion

	Investigation into RQ3
	Motivation
	Approach
	Results
	Conclusion

	Investigation into RQ4
	Motivation
	Approach
	Results

	Threats to Validity
	Internal validity
	External validity
	Natural Language Selection
	Manual Evaluation

	Construct validity
	Property Selection
	Indicator Selection

	Related Work
	Crowdsourced Testing
	Quality Assessment for Textual Documents

	Conclusion
	References
	Affiliations

