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ABSTRACT
As a popular Cyber-Physical System (CPS) development tool chain,

MathWorks Simulink is widely used to prototype CPS models in

safety-critical applications, e.g., aerospace and healthcare. It is

crucial to ensure the correctness and reliability of Simulink

compiler (i.e., the compiler module of Simulink) in practice since

all CPS models depend on compilation. However, Simulink

compiler testing is challenging due to millions of lines of source

code and the lack of the complete formal language specification.

Although several methods have been proposed to automatically

test Simulink compiler, there still remain two challenges to be

tackled, namely the limited variant space and the insufficient

mutation diversity. To address these challenges, we propose

COMBAT, a new differential testing method for Simulink compiler

testing. COMBAT features the combination of an EMI

(Equivalence Modulo Input) mutation component and a diverse

variant generation component. The EMI mutation component

inserts assertion statements (e.g., If /While blocks) at arbitrary

points of the seed CPS model. These statements break each

insertion point into true and false branches. Then, COMBAT feeds

all the data passed through the insertion point into the true branch

to preserve the equivalence of CPS variants. In such a way, the

body of the false branch could be viewed as a new variant space,

thus addressing the first challenge. The diverse variant generation
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component uses Markov chain Monte Carlo optimization to

sample the seed CPS model and generates complex mutations of

long sequences of blocks in the variant space, thus addressing the

second challenge. Experiments demonstrate that COMBAT

significantly outperforms the state-of-the-art approaches in

Simulink compiler testing. Within five months, COMBAT has

reported 16 valid bugs for Simulink R2021b, of which 11 bugs have

been confirmed as new bugs by MathWorks Support.
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1 INTRODUCTION
A Cyber-Physical System (CPS) is an embedded system in which

computational and physical processes are tightly integrated to

provide a favorable environment for intelligent information

processing, real-time sensing, and physical dynamic control of

large-scale engineering systems [27, 28]. As a commercial CPS tool

chain, MathWorks Simulink has become an industry standard,

which is widely used by engineers to design, model, simulate, and

generate embedded code for CPS models. To deploy CPS models in

the target hardware of safety-critical applications [20, 22, 35, 50],

all CPS models are required to be correctly compiled in Simulink

compiler. Therefore, it is crucial to ensure the correctness and

reliability of Simulink compiler, because the bugs in Simulink

compiler may cause the functionality of developed CPS models
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beyond engineers’ expectation, which may result in unexpected

behavior in safety-critical applications [7, 9].

However, it is difficult to detect bugs in Simulink compiler, since

these bugs typically manifest indirectly as CPS model failures.

Engineers may wrongly consider these failures as the bugs in CPS

models, rather than the bugs caused by Simulink compiler.

Additionally, Simulink compiler testing is challenging due to its

large and complex codebase [5, 17, 33] and the lack of complete

formal language specification [6, 18, 21].

An effective method for testing compilers is Equivalence Modulo

Input (EMI). EMI is a differential testing method, which produces

equivalent test programs by mutating the unexecuted code in the

existing program under a given input [10, 39, 46, 51]. Compiler bugs

can be detected by comparing two identically configured compiler

executions (on equivalent input programs). EMI-based methods

have been proven to be effective for detecting thousands of bugs in

C compilers [11, 24–26, 44, 45].

However, existing EMI-based methods cannot be directly applied

to testing Simulink compiler because the CPS language is different

from traditional programming languages [13, 14]. On the one hand,

the notion of determining ‘unexecuted code’ (which are referred

as zombie regions in CPS models) is different [13, 14]. Taking the

If block as an example, although the false branch (i.e., the zombie

region) is not executed, a default output value is still produced,

which is not the case in traditional programming languages. On the

other hand, the CPS language has an explicit notion of sampling

time inference and data type inference. Such notion could cause

zombie regions to vary with sampling times. For example, the inputs

of CPS models are typically obtained from sensors, which have

a fixed sampling time frequency (such as 10 times per second).

Therefore, the output of the same block may change at different

sampling times. This affects the subsequent control and data flows,

which also changes the subsequent zombie regions.

For example, as shown in Figure 1, the Sine Wave block outputs

values between -1 and 1 during the execution of the CPS model.

Assuming that in the current sampling time, the Sine Wave block
outputs 1. The If block then selects Action1 as the true branch and

Action2 as the false branch (i.e., the zombie region). However, at the

next sampling time, the Sine Wave block outputs -1; hence, Action1

becomes the false branch and Action2 is the true branch. Moreover,

although a zombie region (i.e., the false branch) is not executed, it

still outputs a default value (e.g., 0), which may affect the control

and data flows of the CPS model.

The state-of-the-art testing methods for Simulink compiler

testing are SLforge [13] and SLEMI [14]. SLforge is a CPS model

generator, which is similar to Csmith [48]. Specifically, SLforge can

generate a large number of random valid CPS models to test

Simulink compiler based on some predefined configuration

parameters [13]. Given a CPS model generated by SLforge, the

study of SLforge [13] removes all blocks in its zombie regions

under all possible inputs to produce an equivalent CPS variant. In

such a way, Simulink compiler bugs can be found by comparing

the outputs of the CPS model and its variant. However, this

mutation strategy does not insert or delete any block from

compilation regions (i.e., the live regions that can be compiled),

meaning that it can only produce one equivalent variant for each

seed CPS model. In contrast, SLEMI first takes a seed CPS model

Figure 1: Example of a valid Simulink CPS model

generated by SLforge as input, and finds the zombie regions in this

CPS model according to the data obtained during variable profiling.

SLEMI proposes three mutation strategies to generate equivalent

CPS variants for differential testing, namely, randomly deleting

blocks in the zombie regions, replacing zombie regions with the

Saturation block, and extracting blocks in zombie regions and

promoting them to their own child model [14]. Therefore, SLEMI

can only generate a limited number of CPS variants with low

variation diversity. Specifically, two challenges remain to be

addressed for Simulink compiler testing.

Challenge 1. The limited variant space. SLEMI only considers

a limited number of zombie regions in the seed CPS model as

the variant space to conduct mutation. When a seed CPS model

contains few zombie regions, the mutation cannot be effectively

applied. Since EMI-based differential testing relies on equivalent

CPS models with different control and data flows to test various

optimization strategies of Simulink compiler [25], this limitation

can hinder their capability of testing Simulink compiler thoroughly.

Challenge 2. The insufficient mutation diversity. Although
SLforge and SLEMI have demonstrated their bug-finding capability

in Simulink compiler, their simple mutation strategies can result

in insufficient diversity of CPS variants. Therefore, the bugs they

detected can be saturated. Their simple mutation strategies may

only trigger shallow bugs that are very close to the seed CPSmodels.

Moreover, these similar CPS variants may trigger duplicate bugs.

To overcome these challenges, we propose a new method for

Simulink compiler testing named COMBAT (Controllable zOMbie

Blocks mutATion) to generate equivalent and diverse CPS variants
to exercise Simulink compiler thoroughly. COMBAT has an EMI

mutation component and a diverse variant generation component.

Specifically, the EMI mutation component first profiles variable

valuations (i.e., the value range of each variable) at all CPS points

of the seed CPS model. Then, COMBAT inserts assertion

statements (e.g., If /While blocks) at arbitrary points between two

blocks in the seed CPS model. According to the variable ranges

obtained from variable profiling, COMBAT ensures these assertion

statements always evaluated as true. Since an assertion statement

breaks a CPS point into true and false branches, we feed all the

data passed through this CPS point into the true branch to

preserve the equivalence of CPS variants, and consider the body of
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the false branch as the variant space. In this way, new variant

space is generated to overcome Challenge 1. The diverse variant
generation component uses the Markov chain Monte Carlo

(MCMC) optimization sampling strategy to sample the seed CPS

models, which generates complex mutations of long sequences of

blocks in the variant space of the seed CPS model to detect deep

bugs, allowing us to overcome Challenge 2. Moreover, the blocks

are sampled in the seed CPS models, which could improve the

accuracy of sample time inference and data type inference by

Simulink compiler, thereby could improve the mutation

effectiveness of COMBAT. Finally, COMBAT utilizes differential

testing to validate all CPS variants. If the outputs of a CPS variant

are different from the seed CPS model, the corresponding CPS

variant is deemed to trigger a bug.

To evaluate the effectiveness of COMBAT, real-world CPS

models [15] and CPS models generated by SLforge are used as seed

CPS models to generate CPS variants. Our evaluation

demonstrates that COMBAT significantly outperforms the

state-of-the-art methods (i.e., SLforge and SLEMI) in terms of the

bug-finding capability for Simulink compiler testing. Specifically,

COMBAT can detect 6 bugs in four weeks, of which 2 bugs are

new and 4 bugs are known, while SLEMI detects 3 bugs, of which 1

bug is new and 2 bugs are known. SLforge can only detect 1

known bug. Within five months, we have reported 16 valid bugs

for the recently released version Simulink R2021b, of which 11

bugs have been confirmed as new bugs. In addition, the mutation

effectiveness of COMBAT outperforms that of SLEMI by 183.33%

and 220.83% in terms of the average number of newly added blocks

and connections in CPS variants, respectively.

In summary, the main contributions of this work are as follows:

• We propose COMBAT to detect bugs in Simulink compiler.

COMBAT utilizes an EMI mutation component and a diverse

variant generation component to address the limited variant

space and the insufficient mutation diversity challenges in

Simulink compiler testing, respectively.

• Extensive experiments are conducted to evaluate the bug-finding

capability of COMBAT. COMBAT has detected 16 valid bugs, of

which 11 bugs have been confirmed as new bugs by MathWorks

Support.

• We release COMBAT as a replication package for Simulink

compiler testing [16].

Paper Organization: Our motivations are discussed in Section

2. The main components of COMBAT are introduced in Section 3.

Experimental setups and results are presented in Sections 4 and

5, respectively. We elaborate on threats to validity in Section 6.

Related works are discussed in Section 7. Finally, Section 8 presents

the conclusion and future works.

2 BACKGROUND AND MOTIVATION
In this section, we first introduce the process of developing a CPS

model in Simulink. Then, we use two bug examples to motivate

and illustrate our new method COMBAT.

2.1 Preliminaries
Simulink is a block diagram environment for model-based design,

which is the de-facto standard in safety-critical domains [22, 32].

Figure 2: A reduced variant that triggers a sample time
inference exception in Simulink R2021b in the Normal
simulation mode

Simulink supports dataflow and object-oriented programming to

rapidly prototype engineers’ systems by modeling simulation and

compiling executable. In the modeling simulation stage, engineers

develop CPS models by using blocks and connection lines. The

blocks perform some operations on data received by input ports,

and then output calculation results through output ports. The

connection lines pass these outputs to their subsequent

blocks [13, 14, 23, 36]. On the connection lines, there are CPS

points which can calculate variable valuations between two blocks.

When a CPS model is designed, in the compiling executable stage,

Simulink compiler conducts the syntax/semantics analysis, and

automatically infers datatypes of blocks for the CPS model, as well

as CPS model optimization to accelerate software upgrades. After

the successful compilation, an executable is generated, which is

commonly deployed on the target hardware for safety-critical

applications, such as aerospace and healthcare [20, 22, 35, 50].

In the aforementioned process, Simulink compiler bugs may

cause the functionality of the developed CPS model beyond

engineers’ expectations. Generally, there are two main types of

Simulink compiler bugs during compilation, namely crashes and

miscompilations. Crash bugs cause Simulink to crash during

design, modeling, and compilation, which manifest as parse errors

or internal assertion failures. In contrast, miscompilation bugs lead

to inconsistent behaviors between the developed CPS model and

engineers’ expectations. Furthermore, miscompilation bugs are

difficult to recognize because they typically manifest indirectly as

CPS model failures. Since CPS models developed by Simulink are

often deployed in safety-critical environments, it is crucial to

ensure the correctness of Simulink compiler.

2.2 Illustrative Examples
Two confirmed bug examples are discussed in this subsection to

motivate and illustrate COMBAT. The first bug is triggered by the

EMI mutation component, which demonstrates how we profile

variable valuations of the seed CPS model to add new assertion

statements (e.g., If /While blocks). The added assertion statements

preserve the equivalence of CPS variants with different control

and data flows to test various optimization strategies in Simulink

compiler. The second bug is triggered by the diverse variant
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generation component, which samples blocks derived from the

seed CPS model to perform a sequence of mutations in the variant

space.

In this study, we only present the reduced versions of bugs
1

because the original seed CPS models are too large for presentation

(with over hundreds of blocks).

Technical Support Case (TSC) 05274593: Simulink compiler
miscompilation error. Figure 2 presents the reduced variant that

triggers a Simulink compiler miscompilation bug. The sequence of

blocks inserted by COMBAT is highlighted in grey. This variant is

generated as follows:

(1) COMBAT profiles the variable valuations at all CPS points of

the seed CPS model (i.e., the CPS model in Figure 2 excluding the

blocks in grey). For example, COMBAT could find that the value

range of variable 𝑢1 is [0, +∞).
(2) COMBAT adds an assertion statement on the CPS model. In

this example, we add an If block. According to the value valuation

of 𝑢1, we can enforce the conditional predicate of this If block

always evaluated as true. Hence, the output 𝑢1 of the Product block
can be directly passed to the Sin block in the true branch to preserve
the equivalence of the CPS variants. Since the false condition of the

If block is never executed, the inserted If block does not have any

side effects on the CPS model, which can be considered as the EMI

variant space. COMBAT can insert new blocks (such as the Action1

block in grey) in the variant space.

When compiling this CPS variant, Simulink R2021b throws a

sample time inference exception in the Normal simulation mode.

However, the CPS variant is equivalent to the seed CPS model.

Since the output of the Product block is greater than zero under all

inputs, the false branch of the If block is never executed. Simulink

compiler should infer the sample time of the blocks normally, no

matter what blocks are inserted in the false branch.

However, this CPS variant triggers a bug because Simulink

compiler incorrectly assumes that the access to the zombie region

(i.e., Action1 and Delay) are non-trapping; it elevates the Delay
blocks out of the false branch of the If block, which causes the

CPS variant to be executed unconditionally. Specifically, Simulink

compiler incorrectly infers the sample time of the terminal block,

and makes it as a multi-rate block. Existing methods (e.g., SLforge

and SLEMI) cannot change the control and data flows of the seed

CPS model to reveal this bug.

TSC 05314520: Simulink compiler compilation crash. Figure 3
presents a reduced variant that triggers a Simulink compilation

crash bug when compiling the model with Simulink R2021b in the

Normal simulation mode. Initially, Simulink successfully compiles

the seed CPS model. We use the diverse variant generation

component of COMBAT to sample the CPS model, and generates

complex mutations of long sequences of blocks in the variant space

(i.e., the Action2) of the seed CPS model. Note that the variant in

Figure 3 has already been reduced. The original CPS model and its

variants can be found in our replication package [16]. Since the

generated blocks are in the variant space (i.e., the zombie region),

the blocks in this space (i.e., the Action2) should not be executed.

However, after COMBAT generates a sequence of blocks, Simulink

1
A reduced version of a bug-triggering CPS model can be derived by removing blocks

that are not related to the bug. It helps Simulink developers understand and fix bugs.

Figure 3: A reduced CPS variant that triggers a Simulink
compiler compilation crash bug in Simulink R2021b in the
Normal simulation mode

R2021b crashes. Specifically, the data type of Complex block is

incorrectly inferred with and without logging the signal in this

CPS variant. Before recording the signal, the signal type of the

Complex block is double. However, after recording the signal, the

Simulink compiler incorrectly infers the type of the Complex block

as unit32. Eventually, the heuristic inference of the entire CPS

model fails and triggers a Simulink compilation crash bug.

This Simulink compilation crash bug was not triggered in a

simple mutation, but by a sequence of mutations. SLforge and

SLEMI cannot reveal this bug because they cannot generate complex

mutations with long sequences of blocks in the variant space.

3 COMBAT FRAMEWORK
In this section, we first present an overview of the framework of

COMBAT. We then explain the EMI mutation component and the

diverse variant generation component to address the two challenges.

Finally, the details of differential testing are presented.

3.1 Overview
The framework of COMBAT is illustrated in Figure 4 and

Algorithm 1. COMBAT consists of three components: the EMI

mutation component, the diverse variant generation component,

and the differential testing component. The basic idea of COMBAT

is to generate diverse and equivalent CPS variants to exercise

Simulink compiler thoroughly with differential testing. Specifically,

the EMI mutation component (lines 10–15) profiles variable

valuations of the CPS model and inserts assertion statements (e.g.,

If /While blocks) that always evaluate to be true at arbitrary points

between two blocks in the seed CPS model. Hence, the outputs of

the blocks before the assertion statements can be directly passed to

their subsequent blocks in the true branches to preserve the

equivalence of the CPS variants. We consider the body of the false

branches that are never executed as the variant space (Figure 4(a)).

Hence, new variant space with different control and data flows is

generated to address the limited variant space challenge. The

diverse variant generation component (lines 16–24) uses MCMC

optimization sampling strategy to effectively sample the CPS

model (Figure 4(b)). It generates complex mutations of long

sequences in the variant space to detect deep bugs to overcome the

insufficient mutation diversity challenge. Finally, COMBAT utilizes

differential testing (lines 3–9) to validate all CPS variants (Figure
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Figure 4: The framework of COMBAT

Algorithm 1 COMBAT

Input:Simulink 𝑆 , Seed CPS model 𝐶 , CPS parameters 𝑃 ,

Mutant number MAX-ITER

Output: Reported Bug

1: procedure TEST(𝑆 , 𝐶 , 𝑃 )
2: 𝑂 ← 𝑆 .Compile(𝐶).Execute(𝑃 )

3: forMAX-ITER do
4: 𝐶′ ←EMI(𝐶 , 𝑃 )

5: 𝑂 ′ ←𝑆 .Compile(𝐶′).Execute(𝑃 )
6: if 𝑂 ′ ≠ 𝑂 then
7: Return ReportBug(S, 𝐶′, P)
8: end if
9: end for
10: function EMI(CPS 𝐶 , CPS parameters 𝑃 )

11: 𝑉 ←Profile(𝐶 , 𝑃 )

12: 𝑎←GenAssertion(𝐶 , 𝑃 , 𝑉 )

13: 𝐶′ ←Mutate(𝐶 , 𝑎)

14: Return 𝐶′

15: end function
16: functionMutate(CPS 𝐶 , Assertion statement 𝑎)

17: 𝐵← Statistics(𝐶 , 𝑎)

18: 𝑣𝑠 ←GetVariantSpace(𝐶 , 𝑎)

19: if 𝐵 ≠ ∅ then
20: 𝑏𝑠 ←MCMC(𝐶 , 𝐵)

21: 𝐶′′ ← 𝐶 .Insert(𝑣𝑠 , 𝑏𝑠)

22: end if
23: Return 𝐶′′

24: end function
25: end procedure

4(c)). If the output of a CPS variant is different from the seed CPS

model, it is deemed to trigger a Simulink compiler bug.

The framework of COMBAT is inspired by the recent works for

compiler testing [26, 44]. We adopt and improve the existing testing

framework based on the unique CPS language characteristics (e.g.,

the notion of sample time inference and datatype inference).

3.2 EMI Mutation Component
The EMI mutation component includes two sub-components, i.e.,

variable profiling and CPS mutation.

Variable Profiling. COMBAT begins by profiling the variable

valuations (i.e., the value range of each variable) at all CPS points

of the seed CPS model under all inputs. We implement the variable

profiling with the Signal Range Coverage tool in Simulink [1].

Figure 2 can be considered as an example. COMBAT profiles the

seed CPS model (i.e., the CPS model in Figure 2 excluding the

highlighted blocks in grey). During variable profiling, for example,

the value range of variable 𝑢1 is [0, +∞).

CPS Mutation. In this step, COMBAT randomly selects one or more

CPS points in the seed CPS model. COMBAT inserts an assertion

statement to each selected CPS point. All assertion blocks in CPS

models that generate new control/data flows can be inserted, such

as If /While blocks, Function-Both Call Split blocks, and For Iterator
Subsystem blocks. According to the variable profiling [2], COMBAT

sets the predicate of each assertion statement always to be true. For

example, COMBAT sets the predicate of the If block in Figure 2 as

𝑢1 ≥ 0. By this setting, the output of the block before the assertion

statement can be directly passed to its subsequent blocks through

the true branch to preserve the equivalence of the CPS variants. We

consider the false branch that is never executed (i.e., the zombie

region) as the variant space, thus creating new variant space for

generating CPS variants.

Compared to SLforge and SLEMI, COMBAT can significantly

increase the variant space by inserting assertion statements at any

point in the seed CPS model. This strategy increases the control

and data flows of the generated equivalent CPS variants. When

Simulink compiler compiles a CPS model, it needs to determine

which optimization methods are applicable to the current control

and data flows. Therefore, COMBAT can exercise Simulink compiler

more thoroughly by forcing it to use various optimization methods

on CPS variants.

We remark that inserting assertion statements is a common

strategy to maintain the EMI property [44, 47]. COMBAT adopts

this strategy for Simulink compiler testing by considering two

main differences. First, CPS models have sample time. Variable

values can change significantly at different sample time points, e.g.,

ranging [0, +∞). Different from existing studies [44], COMBAT

generates true/false predicates by analyzing the continuous or

discrete ranges of variables instead of a single variable value.

Second, due to the automated datatype inference by Simulink, a

small mutation can trigger vastly different inferred datatypes and

break the EMI property [14], which is not the case for C/C++

compilers. Hence, we record the inferred datatypes of blocks in the

seed CPS model and add a Datatype Conversion block before the
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corresponding block in CPS model variants to maintain the

datatype equivalence.

3.3 Diverse Variant Generation Component
The diverse variant generation component first computes the basic

statistics of blocks in the CPS models (e.g., the number of blocks in

the seed CPS model). Then, MCMC optimization sampling strategy

is used to sample the blocks in the CPS model effectively and insert

new blocks into the variant space. This component aims to generate

complex mutations with long sequences of blocks in the variant

space to detect deep bugs. The basic idea of MCMC optimization

sampling strategy is to construct a Markov chain based on the

probability distribution and the transition probability of blocks in

the seed CPS model. This strategy uses the Markov chain to decide

which blocks should be generated in the variant space.

Specifically, when a block 𝑏 is sampled in the variant space, the

probability to accept the block
ˆ𝑏 as the next block to be generated

in the variant space is defined as follows:

𝐴(𝑏 → ˆ𝑏) = min(1, 𝜃 (
ˆ𝑏)𝑞(𝑏 | ˆ𝑏)

𝜃 (𝑏)𝑞( ˆ𝑏 |𝑏)
), (1)

where 𝜃 ( ˆ𝑏) is the probability density distribution of block
ˆ𝑏 in

the seed CPS model and 𝑞( ˆ𝑏 |𝑏) represents the one-step transition

probability from 𝑏 to
ˆ𝑏.

We calculate the probability density distribution of each block

as the ratio of this block in the seed CPS model. We generate

blocks in the variant space by sampling existing blocks in the seed

CPS model. The sampling strategy assumes that blocks which have

been frequently used should have a higher probability to be

selected, since it ensures that the sampled blocks have a similar

distribution with existing valid CPS models. To calculate the

transition probability, a transition matrix is typically constructed

to record the one-step transition probability between different

blocks. To obtain the transition matrix, we use the variable control

method to compute the transition probability between a selected

block and its child blocks. Specifically, given a block in the seed

CPS model, we consider this block as the root block in the tree

structure and the blocks connected to it as the child blocks. We

then use the normalized frequency of the connection between the

root block and a child block to represent their one-step transition

probability. That is, if a block is closer and frequently connected to

the selected root block, it is more likely to be sampled after the

root block. It ensures that when generating a sequence of blocks in

the variant space, the sequence of blocks does not exhibit

unexpected behavior due to errors in sampling time inference and

data type inference.

After the probability density distribution and the transition

probability are calculated, we conduct our sampling strategy.

Initially, we randomly generate a block in the variant space. Based

on this block, we calculate the acceptance probability of each block

as the next block with formulae 1 and generates the next block

based on this probability. We continue the sampling step until the

number of blocks generated in the variant space reaches an output

block. In this way, we can generate complex mutations of long

sequences of blocks in the variant space to detect deep bugs, which

can overcome the insufficient mutation diversity challenge.

Algorithm 2 MCMC Optimization Sampling Strategy

Input: CPS models 𝐶 , Blocks 𝐵

Output: diverse variants 𝑉
1: 𝜃 (𝑏) ← Parse(𝐵) //probability density

2: 𝑞( ˆ𝑏 |𝑏) ← Count(𝐶) // transition probability

3:
ˆ𝑏 ←Init()

4: while ˆ𝑏 ≠ output block do
5:

ˆ𝑏←Sample(𝐵, 𝑞( ˆ𝑏 |𝑏))
6: Calculate acceptance probability 𝐴(𝑏 → ˆ𝑏))
7: 𝑍 ←Randomly𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚[0, 1]
8: if 𝑧 ≤ A(b→ ˆ𝑏) then
9: 𝑉←𝑉 ∪ ˆ𝑏

10: end if
11: end while
12: Return 𝑉

Algorithm 2 describes the main process of the MCMC

optimization sampling strategy. We first parse the seed CPS model

to obtain all block types and the probability density 𝜃 (𝑏) on line 1

and count the transition probability 𝑞( ˆ𝑏 |𝑏) for each block 𝑏 to the

next block
ˆ𝑏 on line 2. We then use MCMC optimization to sample

the CPS model space to generate additional variants (lines 4 to 6).

We perform sampling judgment during MCMC sampling. We

randomly sample 𝑧 from the uniform distribution (0, 1) and

compare it to the acceptance probability to determine whether to

accept the block
ˆ𝑏 (lines 7 to 10) . The sampling stops, when the

sampled block reaches the output block.

The MCMC sampling strategy used by COMBAT is inspired by

a recent C/C++ compiler testing tool Athena [26]. However, the

CPS language has its unique characteristics. First, as a block-based

language, to improve the variant diversity, COMBAT uses the

MCMC sampling strategy to generate block sequences rather than

reusing existing code snippets directly [26]. Second, Athena [26]

selects code snippets by a program distance objective function. In

contrast, COMBAT improves the diversity by generating different

and valid block combinations. Third, COMBAT solves the datatype

compatibility problem by the block transition probability and

Simulink datatype inference, while Athena [26] uses a code

snippet context table to maintain the datatype consistency.

3.4 Differential Testing Component
Differential testing for Simulink compiler is different from existing

EMI-based compiler testing approaches for procedural

programs [25, 26, 44]. In compiler testing, the test program has

only one output. In contrast, CPS models have a clear sampling

time characteristic, that is, the output of the same block can be

different at different sampling times. Therefore, in the differential

testing phrase, we compare the data values of all blocks for every

sampling time within a time interval. In our differential testing, we

run every CPS variant in both Normal and Accelerator simulation

modes. If the output of a CPS variant is different from the output

of the seed CPS model in any simulation mode, the corresponding

CPS variant is considered to trigger a Simulink compiler bug.
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4 EVALUATION
In this section, four experiments are conducted to evaluate the

effectiveness of COMBAT. Specifically, our evaluation aims at

answering the following Research Questions (RQs).

RQ1: How is the bug-finding capability of COMBAT compared

to the state-of-the-art methods?

RQ2: Can COMBAT detect new Simulink compiler bugs?

RQ3: How effectiveness is the mutation strategy of COMBAT

compared to SLEMI?

RQ4: How effectiveness is the MCMC optimization sampling

strategy of COMBAT?

In our experiments, RQ1 and RQ2 are used to evaluate the bug-

finding capability of COMBAT compared to the state-of-the-art

approaches. RQ3 and RQ4 are employed to evaluate the mutation

strategy of the EMI mutation component and the diverse variant

generation component.

4.1 Seed CPS Models
To evaluate the effectiveness of COMBAT, both real-world CPS

models and CPS models generated by SLforge are used as seed CPS

models, according to the existing study of SLEMI. Specifically, the

real-world CPS models are collected from a large corpus of 1,000

publicly available CPS projects created by engineers [15]. In this

corpus, we filter the CPS models that cannot be run in our Simulink

runtime environment. At last, 357 CPS models are remained. We

use these real-world models because it means that the bugs we

found are likely to directly affect engineers. Since the number of

real-world CPS models is small, following the previous study [14],

we also add CPSmodels generated by SLforge to the seed CPSmodel

set. SLforge is a widely used CPS model generator that supports

most features of the CPS language specification. As suggested in

the existing study [14], the size of the seed CPS models generated

by SLforge is between 100 and 3,000 blocks. With these seed CPS

models, we use COMBAT to generate CPS variants for Similink

compiler testing.

4.2 Evaluation Setup
COMBAT is implemented in MATLAB. The source code and

experimental data are available at GitHub [16]. Our evaluation is

run on a computer with Windows 10 64-bit system, an Intel Core

i9 CPU@2.10GHz, and 120GB of memory.

We evaluate COMBAT and the baselines as follows. Given an

evaluation period (e.g., two weeks), we first feed the real-world

seed CPS models to each algorithm to generate CPS variants for

detecting Simulink compiler bugs. After all these models have been

used, we continue using SLforge to generate additional seed CPS

models for each algorithm until the end of the evaluation period.

Regarding the parameters, we set the number of CPS variants for

each seed CPS model (i.e., MAX-ITER in Algorithm 1) to 5, which is

the same as SLEMI. We use the default parameters of SLforge [13]

and SLEMI [14].

When a Simulink compiler bug is detected, similar to the related

works [24, 44, 45], we reduce the CPS model that triggers the bug

before reporting them to the MathWorks’s bug reports website,

such that Simulink developers can quickly understand and fix bugs.

Specifically, we try to remove blocks in the CPS model one by

one. If the bug still exists after removing a block, we consider this

block as no effect on the bug. Otherwise, the removed block is put

back in its original place. This process continues until no block

can be removed. To avoid reporting duplicate bugs, we use the

failed assertion and back-trace to detect duplicate bugs before bug

submission. We treat two bugs as duplicate bugs when they have

the same failed assertion or back-trace.

We submit an issue for each bug to the MathWorks’s bug reports

website [3]. Then, the MathWorks Support will communicate the

specifics on the issues by email, and finally classify each issue into

new/known/nonbug/pending. Unlike open source projects that

typically list all bug reports, the MathWorks’s bug reports website

only lists bug reports found in the early stage. Meanwhile, this list

is neither comprehensive nor mentioning the corresponding TSC

number of each issue. To make it easier to reproduce our bugs, we

release the CPS models that trigger bugs on GitHub [16].

We compare COMBAT against SLforge and SLEMI. They are

two state-of-the-art methods for Simulink compiler testing. We

reproduce SLforge and SLEMI with source code provided by their

works and use their default configurations.

4.3 Answer to RQ1
Approach. To evaluate the effectiveness of COMBAT, we compare

the bug-finding capability of COMBAT with the state-of-the-art

methods SLforge [13] and SLEMI [14], since finding more bugs

within a time period is the main objective of these approaches.

In the experiment, we detect bugs on both the recently released

version Simulink R2021b and a previous version Simulink R2018a,

since Simulink R2018a has been used for evaluation in SLforge

and SLEMI. We set a single testing period of two weeks for each

Simulink version, that is, every method tests Simulink R2018a and

R2021b for two weeks.

Results. As shown in Table 1, bugs detected in the experiment

can be classified into new bugs (New) and known bugs (Known).
Bugs labeled as Known means they are duplicate with the bugs in

the bug repository. It is obvious from Table 1 that COMBAT

significantly outperforms SLforge and SLEMI in terms of the

bug-finding capability. COMBAT can detect 6 bugs in four weeks

on the two Simulink versions, of which 2 bugs are new and 4 bugs

are known, while SLEMI detects 3 bugs in total, of which 1 bug is

new and 2 bugs are known. SLforge can only detect one known

bug. Moreover, the relationship of bugs detected by SLforge,

SLEMI and COMBAT in Simulink R2018a and Simulink R2021b can

be seen in Figure 5. The reason is that COMBAT can generate new

variant space with different control flow and data flow

characteristics. When Simulink compiles a CPS model, the

compiler uses static analysis to determine which optimization

methods are applicable to the current control flow and data flow of

the CPS model. COMBAT can exercise Simulink compiler more

thoroughly by forcing it to use various optimization methods on

variants. Moreover, COMBAT uses MCMC optimization to sample

the seed CPS model effectively, which generates complex

mutations of long sequences in the variant space. We can see that

the number of bugs detected in Simulink R2018a is more than in

Simulink R2021b. This is because of the fact that the recently
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Table 1: Bugs detected by SLforge, SLEMI and COMBAT in
Simulink R2018a and Simulink R2021b

Simulink R2018a Simulink R2021b

Total

New Known New Known

SLforge 1 0 0 0 1

SLEMI 1 1 0 1 3

COMBAT 1 3 1 1 6

Figure 5: The relationship of Bugs detected by SLforge, SLEMI
and COMBAT in Simulink R2018a and Simulink R2021b

released version ‘Simulink R2021b’ is constantly maintained by the

Simulink developers.

In addition, we find that the bugs detected by SLforge and

SLEMI are a subset of the bugs detected by COMBAT, since

SLforge and SLEMI are limited by the variant space and their

simple mutation strategy. Specifically, COMBAT can significantly

increase the variant space based on its ability to insert assertion

statements at any point in the seed CPS model. For example, by

generating blocks in the newly added variant space, COMBAT

detects the bug TSC 05274593. This bug occurs because Simulink

compiler incorrectly assumes that the access to the zombie variant

space is non-trapping, so it elevates the blocks in this region out of

the false branch of the If block. This operation causes the CPS

model to be executed unconditionally. As a result, Simulink

compiler incorrectly infers the sample time of the terminal block

as a multi-rate block. SLforge and SLEMI failed to reveal this bug

because they cannot change the control flow and data flow of the

seed CPS model to add new variant space.

Conclusion. COMBAT significantly outperforms SLforge and

SLEMI for testing Simulink compiler. These results verify the bug-

finding capability of COMBAT.

4.4 Answer to RQ2
Approach. We conduct an experiment over five months from

November 2021 to March 2022 to evaluate the bug-finding

capability of COMBAT in practice. In this experiment, we test the

recently released version of Simulink (i.e., R2021b), since Simulink

developers fix bugs primarily in the recently released version

rather than in old versions. We submitted all the detected bugs as

issues to the MathWorks’s bug reports website [4].

Figure 6: TSC 05310042. Math function error in accelerate
moode by selecting NaN and One

Results. In five months, we have reported in total 16 unique

issues, of which 11 have been confirmed as new bugs and 5 are

already known to MathWorks. Among them, 15 of the seed CPS

models that triggered the bugs are generated by SLforge, and 1

is from the real-world models (i.e., TSC 05382872). This is due
to the limited number of real-world models (i.e., 357 seed CPS

models). In contract, the number of seed CPS models generated by

SLforge is large, and COMBAT can generate more equivalent and

diverse variants to exercise Simulink compiler thoroughly. Table 2

summarizes the reported bugs. Each bug has a unique TSC number

from MathWorks. There are two types of status of the feedback

from MathWorks on bug report (i.e., 𝑁𝑒𝑤 = newly confirmed bug,

𝐾𝑛𝑜𝑤𝑛 = known bug). There are two types of bugs in our reported

bugs, including crash bugs (𝐶) and miscompilation bugs (𝑀).

From Table 2, we find that 8 crash bugs and 8 miscompilation

bugs have been confirmed or fixed by MathWorks Support. Crash

bugs cause Simulink to report parse errors or internal assertion

failures. For example, TSC 05314520 is a bug found by COMBAT.

This is the bug illustrated in Figure 3. In this bug, COMBAT

generates a series of blocks in the variant space, which causes the

data type of the Complex to Magnitude-Angle block to be

incorrectly inferred. As a result, Simulink R2021b compiler crashes

in the Normal simulation mode. Compared with crash bugs,

miscompilation bugs in Simulink are harder to detect because they

often manifest indirectly as CPS model failures compared to more

frequent bugs in CPS models. TSC 05310042 is an incorrect code

generation bug, and it causes the Min/Max blocks produce

incorrect results in the Accelerator simulation mode as shown in

Figure 6. Specifically, the Min block has only one input and the

first element of the input is NaN. This is problematic because input

[NaN, 1] can output NaN, which is an incorrect result. This bug is

fixed
2
only after two weeks since it is a critical bug which affects

Simulink from R2015 to R2021.

Existing approaches (i.e., SLforge and SLEMI) may not reveal

these bugs for two reasons. First, COMBAT generates new variant

space with different control/data flows to test different optimization

methods of Simulink compiler. Existing approaches seldom change

the control/data flow. Second, COMBAT uses the MCMC sampling

strategy to generate complex block sequences, while SLforge and

SLEMI mainly delete/modify existing blocks. This is also confirmed

1068



Detecting Simulink Compiler Bugs via Controllable Zombie Blocks Mutation ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

Table 2: Bugs reported by COMBAT

TSC Summary Status Type

05255309 Data type error cause cannot open or compile the file normally New C

05274593 Abnormal If block condition judgment New C

05294630 Math function error in accelerate by selceting NaN and zero New M

05296099 Data error for signal generator module in accelerated mode New M

05310042 Min module data inconsistency in accelerate simulation Known M

05314517 Reference model inheritance time exception New C

05314520 The data type error after logging the signal is inconsisten New C

05317645 Data type judgment error under reference model in Math operation module New C

05320137 Exception output of abs block in accelerated compile mode Known M

05358090 Reference model sampling time inference exception New M

05358093 Heuristic inference exception in logging signal New C

05371387 Zero-cross detection cause data exception New M

05382872 Compile error after logging signal in complex module New C

05382877 Accelerate simulation compile errors by using Lcc Known C

05398645 Max module misbehaves under zero-crossing detection Known M

05405356 Abnormal MAX zero-crossing detection in acceleration mode Known M

1
There are two types of status feedback from MathWorks on bug report (i.e., 𝑁𝑒𝑤 = newly confirmed bug, 𝐾𝑛𝑜𝑤𝑛 = known bug). There

are two types of bugs (i.e., Type) in our reported bugs: crash bugs (𝐶) and miscompilation bugs (𝑀).

by RQ1, where SLforge only finds one bug and COMBAT finds

several bugs missed by SLEMI.

Conclusion. COMBAT is effective in detecting Simulink bugs.

Within five months, we reported 16 valid bugs, of which 11 bugs

have been confirmed as new bugs.

4.5 Answer to RQ3
Approach. In this experiment, we compare the mutation

effectiveness of COMBAT with SLEMI by analyzing the properties

of variant CPS models (such as the number of newly added blocks,

connections, and assertion statements). We do not evaluate

SLforge because it only uses a simple strategy (i.e., deleting all

dead blocks in the zombie region) to create variant CPS models.

We count the total CPS variants generated by COMBAT and SLEMI

during one week for testing Simulink R2021b. The box-plots in

Figure 7 show the collected three metric values, including the

number of newly added blocks and connections in the variant

space, and assertion statements in each variant CPS model.

Results. Number of newly added blocks and connections.
The most important elements of CPS models are blocks and

connections, which are widely counted for representing the

characteristics of CPS models[30, 34]. According to [13, 37], the

implicit connections (e.g., the input or output of the connection is

incomplete) are not included in the connection-count metric. As

shown in Figure 7, the minimal and maximal numbers of the newly

added blocks and connections in CPS model generated by

COMBAT are [21, 223] and [20, 210] respectively, which are larger

than those of CPS variants generated by SLEMI. Specifically,

Figure 7 illustrates that COMBAT outperforms SLEMI by 183.33%

and 220.83% in terms of the median of the first four metric values.

The results show that the scale and diversity of the CPS variants

generated by COMBAT are superior to that of SLEMI.

2
https://ww2.mathworks.cn/support/bugreports/2648231?ref=ts_R2022a_Update_1.

Number of assertion statements. The effectiveness of EMI

depends on creating new variant space by altering the control

and data flows of the seed CPS model. This characteristic helps

test various optimization strategies of Simulink [25]. As shown in

Figure 7, the minimal and maximal numbers of assertion statements

in variants generated by COMBAT are larger than those generated

by SLEMI. COMBAT outperforms SLEMI by 16.67% in terms of the

median of the number of assertion statements.

Conclusion. The mutation effectiveness of COMBAT

outperforms SLEMI. COMBAT can generate diverse CPS variants

with different control and data flows, which can partially explain

the reason why the bug-finding capability of COMBAT is better

than SLEMI in most cases.

4.6 Answer to RQ4
Approach. To evaluate the effectiveness of sampling generative

variants by MCMC optimization sampling strategy, we design an

experiment (i.e., keep the variant space of CPS variants consistent)

for comparing the mutation effectiveness in variant space of the

MCMC optimization sampling strategy with the random selection

strategy and the database search strategy, which are commonly

used selection strategies. The random selection strategy randomly

selects blocks from the mathtool [23], while the database search

strategy randomly selects blocks from the existing seed CPS model.

The experiment is conducted on Simulink R2021b within one week.

The number of newly added blocks and connections by different

strategies in CPS variants and the successful mutation rate are used

to evaluate the mutation effectiveness.

Results. As shown in Table 3, the successful mutation rate in

variants by MCMC optimization sampling strategy is 97.67%, which

is clearly larger than that of the random selection strategy and

the database search strategy (i.e., 31.15% and 69.12%). Moreover,

from Table 3, we find that the average numbers of newly added
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Figure 7: The distribution of generatedCPS variants by SLEMI
and COMBAT

Table 3: The mutation efficiency of different sampling
strategies

Blocks Connections Successful mutation

Random selection 187 167 31.15%

Database search 201 224 69.12%

MCMC sampling 211 191 97.67%

blocks and connections generated byMCMC optimization sampling

strategy are 211 and 191, respectively. Although in some cases the

number of connections generated by MCMC optimization sampling

strategy is lower than the Database search strategy, the average

numbers of blocks and successful mutation rate illustrates that the

mutation effectiveness of MCMC optimization sampling strategy

is better than the baselines in most cases. It means our strategy

ensures that when generating a sequence of blocks in the variant

space, the sequence of blocks does not exhibit unexpected behavior

due to errors in sampling time inference and data type inference.

Conclusion. The MCMC optimization sampling strategy can

effectively generate diverse CPS variants.

5 THREATS TO VALIDITY
Internal Threats. The main threat to the internal validity of our

method is the correctness of COMBAT and the reproduced models

SLforge and SLEMI. We double checked our code to reduce errors

in COMBAT. Additionally, we reproduced SLforge and SLEMI by

referencing the open-source code provided by their original papers.

We have fully verified their accuracy. Furthermore, COMBAT only

supports a subset of CPS language specifications and types of

blocks because of the lack of complete formal language

specifications. However, COMBAT has identified several

confirmed Simulink compiler bugs using this subset of CPS

language specifications. We will strengthen COMBAT to consider

more types of blocks and user-created models in follow-up work to

make our testing of Simulink compiler more complete.

External Threats. A key threat to the external validity of

COMBAT is that it can trigger duplicate bugs during the testing

process. To alleviate this threat, we reduce bug-triggering variants

by removing blocks that are unrelated to bugs to help us

understand and analyze bugs more accurately. According to the

verification of MathWorks Support, the bugs we submitted are not

duplicated with each other at present, which indicates that our

method can alleviate this threat.

We generate CPS variants with COMBAT only in the latest

version of Simulink R2021b to evaluate its bug-finding capability

in practice. Compared to Simulink R2018a used by SLforge and

SLEMI, Simulink R2021b is more functional and complex. To

alleviate this threat, we compared the bug-finding ability of

COMBAT with SLforge and SLEMI also on the same old Simulink

version (i.e., Simulink R2018a) in RQ1.

6 RELATEDWORK
6.1 Simulink Testing
There are two methods for testing Simulink compiler, namely

SLforge and SLEMI [13, 14]. SLforge is a CPS model generator

based on some predefined configuration parameters. In contrast,

SLEMI was proposed to find the zombie regions of CPS models

according to model profiling data. SLEMI proposes three mutation

strategies to generate equivalent CPS variants for differential

testing of Simulink compiler, namely, randomly deleting blocks in

the zombie regions, replacing zombie regions with the Saturation
block, and extracting blocks in zombie regions and promoting

them to their own child model [14]. However, these methods are

still have the limited variant space and the insufficient mutation

diversity challenges. We propose COMBAT to address these

limitations and better test Simulink compiler.

To tackle the lack of complete formal language specifications,

Shrestha et al. [40] propose a framework DeepFuzzSL to learn

validity rules automatically by the language model from the

existing corpus of CPS models. In their subsequent work, in order

to address the lack of CPS models, they use transfer learning to

learn knowledge from both randomly generated models and

models mined from open-source repositories to generate new CPS

models for testing [41]. However, their experiments shown that

the bug-finding capability of their methods are not strong, thereby,

these two methods are not used as baselines in our experiments.

There are also works for testing [38, 42, 43] and analyzing [19] a

selected part of Simulink. These works focus on different modules

in Simulink aparts from Simulink compiler. For example, Fehér

et al. [19] model the data type inference logic of CPS blocks in

Simulink [24]. Stürmer et al. [42, 43] use graph grammars to test

optimization rules of code generators. In contrast, we mainly focus

on testing the simulation compilation part of Simulink.

6.2 Differential Testing in Compiler testing
Differential testing considers equivalent variants of test cases to

generate variants according to the inputs of a program. It detects

bugs by comparing the results of different variants [9, 29, 31, 49].

Differential testing has been fully verified in widely used

compilation tools such as GCC. It has identified over 1,000

bugs [25, 26, 44, 45].
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In compiler testing, there are three EMI-based difference testing

mutation approaches, including Orion [25], Athena [26], and

Hermes [44]. Orion focuses on mutating dynamically dead

program regions by randomly pruning unexecuted statements to

generate variant programs [25]. Athena can insert code into or

delete code from dead code regions under different inputs [26].

Unlike Orion and Athena, which can only mutate in dead code

regions, Sun et al. [44] can mutate both live and dead code regions

to generate equivalent variants.

In addition to EMI-based differential testing, Jiang et al. [24]

presented CTOS which uses arbitrary optimization sequences for

identifying compiler bugs in LLVM. Their approach significantly

increases the ability to detect bugs. Tang et al. [45] presented a

diversity-guided program mutation method for detecting

compiler-warning bugs. Chen et al. [11] proposed history-guided

configuration diversification generation to test compilers to solve

the singleness issue of test programs generated by the Csmith.

To accelerate compiler testing, Chen et al. [8] predict the

probability that whether a test program can detect a bug. Based on

this bug-revealing probability, all test programs are ordered and

executed to achieve accelerated testing. Recently, Chen et al. [12]

presented a method that predicts the test coverage of a test

program for compiler testing and then accelerates compiler testing

based on test coverage information.

However, existing differential testing methods cannot be directly

applied to testing Simulink compiler. One key difference is that

the CPS language specification has an explicit notion of sampling

time, which gives rise to zombie regions in CPS models that do not

exist in traditional programming languages. Furthermore, both true

and false if-then-else branches will simultaneously return values,

regardless of the selection of the If block, which is also dissimilar

to traditional programming languages.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we propose COMBAT, an automated Simulink

compiler bug detection approach. COMBAT includes an EMI

mutation component and a diverse variant generation component,

which address the limited variant space challenge and the

insufficient mutation diversity challenge of Simulink compiler

testing, respectively. COMBAT can generate a large number of

CPS variants with different control and data flows to exercise the

Simulink compiler more thoroughly by forcing it to use various

optimization methods on CPS variants. Within five months, we

have reported in total 16 unique issues on the latest version of

Simulink (i.e., Simulink R2021b), of which 11 have been confirmed

as new bugs by MathWorks Support.

In future work, we plan to further improve COMBAT by

supporting more types of blocks and user-created models. In

addition, we plan to conduct an empirical study to deeply compare

the effectiveness and the types of detected bugs of different testing

approaches on more CPS development tool chains.
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