
Unsupervised Deep Bug Report Summarization

Xiaochen Li
Key Laboratory for Ubiquitous
Network and Service Software of
Liaoning Province; School of
Software, Dalian University of
Technology, Dalian, China
li1989@mail.dlut.edu.cn

He Jiang
School of Software, Dalian

University of Technology, Dalian,
China; Beijing Institute of

Technology
jianghe@dlut.edu.cn

Dong Liu
School of Software, Dalian

University of Technology, Dalian,
China

dongliu@mail.dlut.edu.cn

Zhilei Ren
School of Software, Dalian

University of Technology, Dalian,
China

zren@dlut.edu.cn

Ge Li
Key Laboratory of High

Confidence Software Technologies
(Peking University) Ministry of
Education, China; Software

Institute, Peking University, China
lige@pku.edu.cn

ABSTRACT

Bug report summarization is an effective way to reduce the
considerable time in wading through numerous bug report-
s. Although some supervised and unsupervised algorithms
have been proposed for this task, their performance is still
limited, due to the particular characteristics of bug reports,
including the evaluation behaviours in bug reports, the di-
verse sentences in software language and natural language,
and the domain-specific predefined fields. In this study, we
conduct the first exploration of the deep learning network on
bug report summarization. Our approach, called DeepSum,
is a novel stepped auto-encoder network with evaluation
enhancement and predefined fields enhancement modules,
which successfully integrates the bug report characteristics
into a deep neural network. DeepSum is unsupervised. It
significantly reduces the efforts on labeling huge training sets.
Extensive experiments show that DeepSum outperforms the
comparative algorithms by up to 13.2% and 9.2% in terms
of F-score and Rouge-n metrics respectively over the pub-
lic datasets, and achieves the state-of-the-art performance.
Our work shows promising prospects for deep learning to
summarize millions of bug reports.

CCS CONCEPTS

� Software and its engineering � Maintaining soft-
ware;

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5714-2/18/05. . . $15.00
https://doi.org/10.1145/3196321.3196326

KEYWORDS

Bug Report Summarization, Mining Software Repositories,
Deep Learning, Unsupervised Learning

ACM Reference Format:
Xiaochen Li, He Jiang, Dong Liu, Zhilei Ren, and Ge Li. 2018.
Unsupervised Deep Bug Report Summarization. In ICPC ’18:

ICPC ’18: 26th IEEE/ACM International Confernece on Program
Comprehension , May 27–28, 2018, Gothenburg, Sweden. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3196321.

3196326

1 INTRODUCTION

Bug repositories accumulate considerable knowledge for soft-
ware projects [18, 47], including the experience on bug reso-
lutions, historical software bugs, etc. To date, a single bug
repository, e.g., the Eclipse Bugzilla repository, has already
collected over 485,000 historical bug reports. Bug reports are
important resources to maintain the long-term running of a
software system, since the stakeholders of a software project
prefer to understand the knowledge in these bug reports
before conducting a software activity [33, 49]. For example,
the common practice for software developers to fix newly
reported bugs is to refer to similar historical bug reports for
possible solutions [49]. Hence, nearly 600 sentences have to
be read on average if a developer refers to only 10 historical
bug reports [29]. Besides, bug reporters are usually required
to wade through related bug reports before submitting a new
one, to avoid a duplicate bug report submitted [33].

To reduce the tedious and time-consuming efforts in pe-
rusing historical bug reports, bug report summarization is
proven to be a promising direction [38]. The Debian commu-
nity even encourages stakeholders to manually set a summary
for each bug report [7], though the considerable human costs
may burden this activity. Hence, automatic extractive bug
report summarization is an alternative way, which aims to ex-
tract salient sentences in a bug report. Previous studies try to

https://doi.org/10.1145/3196321.3196326
https://doi.org/10.1145/3196321.3196326
https://doi.org/10.1145/3196321.3196326

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Xiaochen Li, He Jiang, Dong Liu, Zhilei Ren, and Ge Li

 Bug 170801 - Converting image from grayscale to black&white is

painfully slow

Status:
RESOLVED

FIXED

Product: GIMP

Component: General

Version: 2.2.x

Hardware: Other All

Importance: Normal normal

Assigned To: GIMP Bugs
……..

Reported:
2005-03-18 14:46 UTC

by Xuan Baldauf

Modified:
2008-01-15 12:50 UTC
(History)

CC List: 1 users (show)

See Also:

Xuan Baldauf 2005-03-18 14:46:31 UTC Description

1. Open a large grayscale image of your choice (e.g. ….
2. Use “Tools/Color Tools/Threshold” to apply some threshold choosen.
3. Now you have a 8bit grayscale image, which acturally consists only of color values “0”
and color values “255”. ….
……………
This slow speed is not acceptable for interactive image processing, and this slowness is
not nessary at all.
……………

Manish Singh 2005-03-19 17:48:16 UTC Comment 8

Revision 1.156. ….
if (palette_type == GIMP_WEB_PALETTE ||
 palette_type == GIMP_MONO_PALETTE ||
……………

Adam D. Moss 2005-03-20 12:26:09 UTC Comment 10

The 'mono' palette option doesn't even bother to start this pre-pass because it could
only possibly pay off the extra effort if the entire image is pure black and pure white,
which is expected to be a comparatively rare occurance.

Xuân Baldauf 2005-03-20 13:06:07 UTC Comment 11

<quote> The 'mono' palette option doesn't ……
I don't think that this operation is so rare, … and then a "convert to 1bit" operation to
actually adjust the internal memory requirements.

Adam D. Moss 2005-03-20 14:01:48 UTC Comment 12

> and then a "convert to 1bit" operation to actually adjust
> the internal memory requirements.
If you mean GIMP's internal memory requirements ….
……………

S1
S2
S3

S4

S5
S6
S7

S8

S9
S10

S11
S12
S13

Comment

Title

Predefined

Field

Description

username

Figure 1: Example of Gnome bug report #170801.

train bug report summarizers with features from conversation-
based text summarization [17, 38]. Due to the limitation of
labeled data, unsupervised algorithms are also migrated for
this task [27, 29]. However, their performance is still limited.

Compared with texts of news, biographies, etc., bug re-
ports follow their own characteristics, which may weaken the
effectiveness of a summarization technique. First, bug reports
are conversation-based. Salient and duplicate sentences mix
together due to the frequent evaluation or assessment behav-
iors [27]. Second, bug reports contain many different sentence
types in natural language and software language [29]. It is
non-trivial to automatically measure the contributions of
different sentence types to the summary. Third, a bug report
is usually associated with some predefined fields [52], e.g.,
the component or the product causing this bug, which may
provide helpful information in identifying salient sentences.

Based on the above characteristics, we propose a novel
Deep learning based Summarizer, DeepSum, to better sum-
marize bug reports. The kernel of DeepSum is a stepped
auto-encoder network, which infers the bug report summary
based on the hidden layers of the network. The basic idea of
DeepSum is that, the hidden layers of a deep neural network
is a compressed expression of the input feature vectors trans-
formed from the sentences in the bug reports. The summary
sentences of a bug report can be selected by measuring the
weights of each sentence to this compressed expression with
some sentence selection algorithms.

DeepSum first strengthens the vectors of the sentences
being evaluated in the conversation-based reports, and fil-
ters the duplicate versions of the evaluated sentences with

an evaluation enhancement module. Then, it stepwise feeds
the vectors of different sentence types into an auto-encoder
network to automatically measure the weights of words in
distinct sentence types to the summary. The words in the
predefined fields are enhanced when initializing the network
parameters. At last, DeepSum summarizes the bug report
based on the word weights by Dynamic Programming.

We compare DeepSum against seven previous summariza-
tion techniques over all the public datasets for bug report
summarization [17, 27, 29, 38]. Extensive experiments show
that DeepSum significantly outperforms the comparative al-
gorithms by up to 13.2% and 9.2% in terms of F-score and
Rouge-n metrics respectively over the public datasets. Most
parameters of DeepSum can be set in a wide range of values.
Meanwhile, the unsupervised nature of DeepSum makes it
independent to the datasets and costs little time to label
huge datasets for training.

In summary, we make the following contributions.
(1) To the best of our knowledge, it is the first attempt

towards employing deep learning to summarize bug reports.
(2) We propose a novel deep neural network in DeepSum

for bug report summarization.
(3) Experiments demonstrate that DeepSum achieves the

state-of-the-art performance for bug report summarization.

2 MOTIVATION

Bug reports are widely used for recording software bugs.
Typically, two roles are involved in writing a bug report,
including a reporter (mostly a user or a tester) to submit and
discuss the details of the bug, and the participators who are
the developers interested in fixing the bug. Generally, a bug
report consists of a title, a description, some predefined fields
and several comments. Fig. 1 is a bug report example [2]. The
title of this report concludes the report topic, namely the slow
speed of converting images. The details for reproducing the
bug are added in the description. The predefined fields show
this bug happened in the “General” component of the “GIMP”
product. To find satisfactory solutions, several comments are
added to the report by the reporter and participators.

Facing numerous lengthy bug reports, bug report summa-
rization aims to generate an summary by directly extracting
and highlighting informative or salient sentences (also called
summary sentences) from the description and comments of
a bug report [38] (the bold sentences in Fig. 1). Although
several supervised and unsupervised algorithms have been
proposed to resolve the problem, the unique characteristics of
bug reports may weaken the effectiveness of these techniques.

First, bug reports are conversation-based text with fre-
quent evaluation behaviours [27]. The reporter and the par-
ticipators discuss other’s opinion by copying his/her sentence
and adding evaluations to it. For example, in Fig. 1, before
evaluating the sentence 𝑠8, Xu�̂�n Baldauf wrote a similar
sentence 𝑠9 for evaluation. Another evaluation is that Adam
D. Moss clicked the “reply” button to copy sentence 𝑠10 as
𝑠11 and 𝑠12 (sentences start with “>”), and then evaluated
𝑠10 in 𝑠13. We call the sentences being evaluated as evaluated

Unsupervised Deep Bug Report Summarization ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

(A) Bug report pre-processing

similar
reports

C
o

sin
e

sim
ilarity

the new report for

summarization input training set

Bug Repository

(C) Summary generation

Word weighting

word weights top k2 words

Sentence weighting

score len

s1 0.324 16

…. … …

Top k2

words

weights

words in st
st

Sentence selection

 a b c d e f

a 0 1 1 1 1 1

b 1 1 1 1 1 1

c 1 2 2 2 2 2

d 1 2 2 2 2 2

e 1 2 2 2 3 3

f 1 2 2 2 3 4

summary

(B) Unsupervised network training

Predefined fields enhancement
for V1, V2, and V3

Product: GIMP

Component: General
…… : ……

Evaluation enhancement

evaluate

evaluated sentence

duplciate sentence

Re-initialize

Stepped auto-encoder

network

f1
* reconstructs f1

f2
* reconstructs f2

f3
* reconstructs f3

f1 software vector

 f2 participator vector

 f3 reporter vector

encoding

decoding

U1

U2

U3

U4

V1

V2

V3

V3
T

V2
T

V1
T

O1

O2

O3

O4

O5

layer1|

layer2|

layer3|

layer4|

layer5|

Figure 2: The framework of DeepSum.

sentences, e.g., 𝑠8, 𝑠10, and their similar versions as duplicate
sentences, e.g., 𝑠9, 𝑠11, 𝑠12. Although the evaluated sentences
are frequently discussed and important, their corresponding
duplicate sentences make it hard to discover the salient one.

Second, bug reports consist of different sentence types,
namely the natural language sentences by the reporter, the
natural language sentences by the participators, and the
software language sentences (typically, code snippets and
system messages). It is crucial to measure the contributions
of different sentence types. Specifically, the natural language
sentences by the reporter are usually more informative than
that by the participators [27], since participators’ comments
are based on the topics proposed by the reporter. Meanwhile,
despite developers are being familiar with the software lan-
guage, a line in software language is usually less informative
than that in natural language [29], e.g., a simple requirement
“open a file” may result in many lines of code [42].

Third, a bug report is associated with many predefined
fields [47, 52]. For these fields, product, component, version,
and hardware are set by the reporter to reveal the environ-
ment information for reproducing the bug. Such information
may be helpful for extracting salient sentences of a bug report.

Considering these unique characteristics, we propose Deep-
Sum for effective bug reports summarization, a stepped auto-
encoder network with evaluation enhancement and predefined
fields enhancement modules to address these characteristics.

3 FRAMEWORK OF DEEPSUM

DeepSum summarizes a bug report by three steps, including
bug report pre-processing, unsupervised network training,
and summary generation. Given a new bug report, DeepSum
first automatically detects a set of similar reports to form an
unlabeled training set (Fig. 2(A)). The bug reports in the
training set are used to train a stepped auto-encoder network
for assigning sentence scores of the new bug reports (Fig.
2(B)). At last, DeepSum extracts summary sentences with
Dynamic Programming based on these scores (Fig. 2(C)).

3.1 Bug Report Pre-processing

This step removes the noise in bug reports and collects similar
reports for training the stepped auto-encoder network.

Bug reports are real-world data with considerable noises
[49]. To remove the noises, DeepSum first tokenizes each
sentence in the bug reports with a software-specific regular
expression “[∖w−]+(∖.[∖w−]+)*” [27]. Next, stop words re-
moval [9] and Porter stemming [36] are conducted. At last,
DeepSum filters sentences with less than three words [10],
since they may not convey a piece of complete information.

After noise removal, DeepSum collects a set of bug reports
for training the stepped auto-encoder network. For a new
bug report (the bug report for summarizing), DeepSum first
adds this new report to the training set. Since similar bug
reports may contain common salient sentences or words to
discuss bug solutions [4, 18], DeepSum also adds the top
k1−1 most similar reports prior to the new one from the
same bug repository. The similarity is the cosine similarity
between term frequency vectors of texts in description and
comment fields of two bug reports calculated by Lucene [28].
We choose a simple and efficient way for calculation without
consideration of the weight of each field or bug report topics.

At last, there are totally k1 bug reports fed into the network.
In this study, the size of the input training set k1 is 100.

Example: Fig. 3(A) is an example representation of the
new bug report in Fig. 1 and its top k1−1 similar reports.

3.2 Unsupervised Network Training

This step trains a stepped auto-encoder network for summa-
rization. We first transform the sentences in each training
report into term frequency vectors and utilize evaluation
enhancement to re-initialize the vectors. Then the vectors of
different sentence types are fed into the network for train-
ing. In the network, words in predefined fields are enhanced
during initializing the network parameters.

3.2.1 Evaluation Enhancement. Since there are frequent
evaluation behaviours in bug reports, this sub-step enhances

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Xiaochen Li, He Jiang, Dong Liu, Zhilei Ren, and Ge Li

the new

report top k1-1 similar reports

prior to the new one in

the same repository A

s1 0 0 0

s6 0 0 1

s7 1 0 1

s8 3 4 3

s9 3 4 3

s10 0 3 2

s11 0 2 1

s12 0 1 2

 E
v

alu
atio

n

E
n

h
an

cem
en

t B

the new

report

s1 0 0 0

s6 0 0 1

s7 1 0 1

s8 6 8 6

s9 0 0 0

s10 0 6 5

s11 0 0 0

s12 0 0 0

S
tep

p
ed

A
u

to
en

co
d

er

N
etw

o
rk

 T
rain

in
g

C

Stepped Autoencoder

values of
U,V

software vector

1 0 2

participator vector

0 6 5

reporter vector

6 8 6

wordi weight in
software
sentences

[avg(wordi (1*10))]

software vector

1 0 2 1 0 0

(1*Voc)

V1 (Voc*1000)

U1 (1000*250)

U2 (250*10)

X1 (Voc*10)

×

word

weights

top k2

words

W
o

rd

W
eig

h
tin

g

D

 S
en

ten
ce

W
eig

h
tin

g

E

index 1 2 236 985 4773

word black image 1bit tool use

weight 0.03 0.02 0.01 0.05 0.03

 score length

S1 … …

S2 0.13 9

… … …

s10 6 5 0

Figure 3: An example for DeepSum.

the evaluated sentences and reduces the influence of the dupli-
cate versions for each training report. We represent a sentence
s in a bug report as f𝑠=

[︀
𝑓1

𝑠,𝑓2
𝑠,. . .,𝑓𝑣𝑜𝑐

𝑠,. . .,𝑓|𝑉 𝑜𝑐|
𝑠
]︀
, where

𝑓𝑣𝑜𝑐
𝑠 is the term frequency of the word 𝑓𝑣𝑜𝑐 in the sentence

s normalized by the length of the bug report and Voc is the
vocabulary of the training set. Under this representation, the
similarity of two sentences is defined as the cosine similarity:

𝑠𝑖𝑚(f𝑠𝑖 , f𝑠𝑗) =
f𝑠𝑖 · f𝑠𝑗
|f𝑠𝑖 |

⃒⃒
f𝑠𝑗

⃒⃒ , (1)

where f𝑠𝑖 and f𝑠𝑗 are the term frequency vectors of the ith
sentence 𝑠𝑖 and the j th sentence 𝑠𝑗 respectively.

Based on the above definition, the evaluated and duplicate
sentences can be identified and re-initialized as follows.

(a) Identify a duplicate sentence. As shown in Fig. 1, a user
usually clicks the reply button or writes similar sentences
(e.g., the sentence 𝑠9) to evaluate a previous sentence. When
clicking the reply button, the Bugzilla system automatically
copies and adds “>” to the sentences (e.g., the sentence 𝑠11).
DeepSum traverses sentences in a bug report from the last
sentence to the first one. A duplicate sentence is detected, if
the sentence starts with the sign “>” or its similarity with a
previous sentence exceeds a threshold. The threshold 𝜃 is 0.9
as we will evaluate later in RQ1. These rules can be easily
migrated after observing other bug repositories. Meanwhile,
Bugzilla has been widely used by more than 136 companies
and organizations to manage bug reports [24].

(b) Identify the related evaluated sentence. DeepSum i-
dentifies the previous sentence with the largest similarity of
the duplicate one as the evaluated sentence. If two previous
sentences have the same similarity, DeepSum identifies the
sentence in front as the evaluated sentence.

(c) Re-initialize the two vectors. DeepSum adds the value of
each element in the duplicate sentence vector to the evaluated
sentence vector, and then sets all the elements in the duplicate
sentence vector to be zero to reduce its influence.

The above process repeats until all the evaluated and
duplicate sentences are identified. As a result, the elements
in the evaluated sentence vector have larger initial values
than those in the duplicate sentence vectors.

Example: Fig. 3(A) shows the initial sentence vectors
of a new bug report. The vectors’ length is the vocabulary
of the training set. In Fig. 3(A), the first element in vector
𝑠8 is three, which means the first word in the vocabulary
occurs three times in 𝑠8. For simplicity, we do not normalize
these elements in the example. After evaluation enhancement,
DeepSum identifies 𝑠9 as a duplication of 𝑠8, and regards
𝑠11 and 𝑠12 as duplications of 𝑠10. Hence, the vector of 𝑠9 is
added to 𝑠8, e.g., the first element in vector 𝑠8 is re-initialized
to 6 (in Fig. 3(B)). Similarly, 𝑠10 is re-set with 𝑠11 and 𝑠12.
Then, the elements in vectors 𝑠9, 𝑠11 and 𝑠12 are set as zero.

3.2.2 Stepped Auto-encoder Network Training. With the
enhanced vectors of each training bug report, DeepSum trains
a stepped auto-encoder network for summarization.

As analyzed in Section 2, bug reports usually consist of
three types of sentences which may have distinct importance
to the summary, including the software language sentences
(referred as software sentences), the natural language sen-
tences by participators (participator sentences), and the nat-
ural language sentences by the reporter (reporter sentences).
DeepSum detects the sentence types as follows.

(a) Detect the software sentences. Software sentences are
detected with the bug report analysis framework Infozilla [3].
For code snippets, it first identifies code lines by matching
some strong regular expressions, e.g., “=.*?;$”, and then
expands the regions with surrounding sentences by many
weak rules, e.g., sentences contain “class”, “public”, etc. The
system messages are identified as the continuous sentences
containing “:” or “ ”. Besides, if the distance of two regions
is within three sentences, we also take the sentences between
them as software language, in order to include any excep-
tions to the above rules. We find that 95% detected software
sentences are true positive in our experiment.

(b) Detect the reporter sentences and participator sen-
tences. DeepSum directly classifies the remaining natural
language sentences by matching the reporter’s name with the
username item in the description and comment fields.

After detecting the sentence types, DeepSum stepwise en-
codes and decodes different sentence types with a stepped
auto-encoder network. In the following paragraphs, we in-
troduce the inputs and outputs, the architecture, and the
training process of the network.

(a) The network inputs and outputs. The network inputs
are three vectors. For a training bug report, DeepSum adds
up the sentence vectors of the same sentence types to form
three input vectors. These vectors denote as the software
vector f1, the participator vector f2, and the reporter vector
f3. After encoding and decoding the inputs with the network,

Unsupervised Deep Bug Report Summarization ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

DeepSum requires the outputs of the network to be three
vectors of the same length with the inputs, namely f1

*,f2
*,

f3
*, which means the reconstruction of the input vectors.

The objective of the network is to minimize the differences
between the input vectors and the output vectors.

(b) The network architecture. As shown in Fig. 2(B),
there are five hidden layers in the network. The unit num-
ber of each hidden layer is similar with a traditional auto-
encoder network [26], namely numlayer1=numlayer5=1000,
numlayer2=numlayer4=250, and numlayer3=10. For this archi-
tecture, we have the following observations:

First, the network compresses three input vectors into 10
hidden units in layer3, and then reconstructs the entire input
vectors to the outputs. Hence, this hidden layer can be viewed
as a compressed expression of the input vectors, which meets
the concept of summarization. The compressed expression
may reserve the meaningful information of the inputs to infer
informative words of a new bug report.

Second, the network stepwise feeds the three inputs into
the hidden layers. The software vector is at the bottom and
the reporter vector is near the hidden layer layer3. The reason
is that, since software sentences are usually less informative
than the other sentence types, DeepSum heavily compresses
the software vector with three hidden layers, i.e., layer1 to
layer3, to filter the noises. In contrast, the reporter sentences
are usually more informative, DeepSum only compresses the
reporter vector once to reserve all meaningful information.

(c) The training process. DeepSum inputs each training bug
report to the network. By minimizing the differences between
the inputs and outputs, DeepSum optimizes the network
parameters with the widely used RMSProp optimizer [13].
The initial learning rate 𝜂 of the optimizer is 0.01 [19]. We
also apply the dropout strategy [40] to prevent the network
from overfitting. The dropout rate is 0.5 [40].

In this sub-step, DeepSum first encodes the inputs with
layers 𝑙𝑎𝑦𝑒𝑟1 to 𝑙𝑎𝑦𝑒𝑟3. Let f1, f2, f3 be the software vector,
participator vector, and reporter vector respectively, O𝑖 be
the output vector of 𝑙𝑎𝑦𝑒𝑟𝑖 (i≤3), and b𝑖 be the bias of 𝑙𝑎𝑦𝑒𝑟𝑖.
The matrices 𝑈𝑖 and 𝑉𝑖 are the weighs of connections between
the fully-connected 𝑙𝑎𝑦𝑒𝑟𝑖−1 or f𝑖−1 and 𝑙𝑎𝑦𝑒𝑟𝑖. We have

O𝑖=𝑠𝑖𝑔 (O𝑖−1𝑈𝑖−1+f𝑖𝑉𝑖+b𝑖) , (2)

where 1≤ 𝑖≤ 3, O0 = 0, 𝑈0 = 0, and 𝑠𝑖𝑔(·) is the sigmoid
activation function. Then, DeepSum decodes the hidden layer
𝑙𝑎𝑦𝑒𝑟3 with 𝑙𝑎𝑦𝑒𝑟4 and 𝑙𝑎𝑦𝑒𝑟5. Let f1

*, f2
*, f3

* be the outputs
corresponding to f1, f2, f3, O𝑖 (4 ≤ 𝑖 ≤ 5) represents the
reconstruction of hidden layer 𝑙𝑎𝑦𝑒𝑟1 and 𝑙𝑎𝑦𝑒𝑟2, and b𝑖 and
c𝑗 are the bias of O𝑖 and f𝑗

* respectively. We have

O𝑖=𝑠𝑖𝑔 (O𝑖−1𝑈𝑖−1+b𝑖) , (3)

f𝑗
*=𝑠𝑖𝑔

(︁
O6−𝑗𝑉𝑗

𝑇 +c𝑗
)︁
, (4)

where 𝑈𝑖−1=𝑈6−𝑖
𝑇 , 1≤𝑗≤3.

DeepSum optimizes the network parameters by minimizing
the cross-entropy loss function [46] between f=[f1, f2, f3] and
f*=[f1

*, f2
*, f3

*]. The parameters continue optimizing until
the minimum loss retains unchanged within 100 iterations.

Example: In Fig. 3(C), DeepSum merges the vectors of
the same sentence type. For the vectors in Fig. 2(B), it merges
𝑠6 and 𝑠7 into the software vector, merges 𝑠8, 𝑠11, and 𝑠12
into the participator vector, and merges 𝑠1, 𝑠9, and 𝑠10 into
the reporter vector. Then, DeepSum feeds the three vectors
of each training report into the network to train 𝑈 and 𝑉 .

3.2.3 Predefined Fields Enhancement. Some predefined
fields set by the reporter may be helpful for revealing a
bug, including product, component, version, and hardware.
DeepSum strengthens the influence of words in these fields
in the same way as [26] when initializing the network param-
eters. Initially, the matrixes 𝑈 , 𝑉 are randomly initialized to
a zero mean Gaussian with a standard deviation of 0.01 [26].
If the ith word in the input vectors exists in the predefined
fields, the parameters in row 𝑖 of 𝑉 are set to the maximum
value in 𝑉 . The reason is that, DeepSum assigns word weights
according to the values of 𝑈 and 𝑉 (discussed in Section
3.3). The weights of the words in the predefined fields may
be enhanced after maximizing the initial values of 𝑈 and 𝑉 .

3.3 Summary Generation

This step assigns weights for words in the new bug report and
collects a set of salient words. The salient words are used to
assign scores for the bug report sentences. With the sentence
scores, a summary is generated by Dynamic Programming.

3.3.1 Word Weighting. DeepSum assigns word weights
according to the input vectors of the new bug report and the
parameters 𝑈 and 𝑉 . The intuitive idea is that, we assume the
hidden layer (𝑙𝑎𝑦𝑒𝑟3 in this study) is a compressed expression
or summary of the input vectors. Hence, we can assign word
weights by measuring how each word in the input vectors
contributes to this compressed expression.

Specifically, we explain this process by an example of
assigning the weight of word 𝑖 in the software vector (in Fig.
3(D)). We first collect the trained network parameters 𝑈 and
𝑉 , and the input vectors of the new bug report. Then we
multiply 𝑉1, 𝑈1 and 𝑈2 to generate a new matrix 𝑋1. For
meaningful multiplication, a sigmoid function is applied on
the matrices to transform the matrix values to be positive.
The row number of 𝑋1 is the same as the software vector
length, and the column number is the unit number of 𝑙𝑎𝑦𝑒𝑟3,
i.e., 10. 𝑋1 is regarded as a simplified function to transform
the software vector to 𝑙𝑎𝑦𝑒𝑟3. In this study, we utilize 𝑈 and
𝑉 to calculate the transformation function, since they are
the core parameters of the network.

Then we assign the weight of word 𝑖. We set all the values
in the software vector to be zero except word 𝑖. In Fig. 3(D),
the first element “1” in the vector is reserved. We can multiply
this vector with 𝑋1 to get the importance of word 𝑖 to each of
the ten hidden units in 𝑙𝑎𝑦𝑒𝑟3. We average the ten values to
achieve the weight of word 𝑖 in software sentences. Similarly,
the weights of word 𝑖 in participator sentences and reporter
sentences can be calculated by 𝑉2 and 𝑈2, or 𝑉3. DeepSum
sums the three weights of word 𝑖, and ranks and selects the
top 𝑘2 words in the new bug report as a salient words set.

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Xiaochen Li, He Jiang, Dong Liu, Zhilei Ren, and Ge Li

3.3.2 Sentence Weighting. Based on the the salient words
set, we assign scores for the sentences in the new bug report.
For each sentence, we collect its enhanced sentence vector,
and multiple the elements in the vector with the summed
weights of the corresponding word in the salient words set.

Example: Fig. 3(E) lists the five salient words (𝑘2=5),
their indexes, and the summed word weights in the example.
Words “black” and “image” are the first two element in the
vocabulary (indexed as 1 and 2), and the word “use” is the
last one (indexed as 4773). In the example, the sentence score
of 𝑠10 is achieved by a multiplication between the enhanced
term frequencies in the sentence vector of 𝑠10 (in Fig. 3(B))
and the summed word weights in the salient words set, namely
𝑠10 is scored as 0*0.03+6*0.02+...+5*0.03. All the weights
of words excluded in the salient words set are zero.

3.3.3 Sentence Selection. With the sentence scores, bug
report summarization turns into selecting sentences sselect

in the new bug report to maximize the total sentence score
under a length limitation. It is a typical 0-1 Knapsack prob-
lem, which can be solved by Dynamic Programming [43], a
common sentence selection algorithm in text summarization
[26, 31]. Similar to previous studies [27, 38], we select sen-
tences until they reach 25% length of the new bug report
in words. The idea of Dynamic Programming is to decide
whether to add 𝑠𝑖 to the summary under the remaining sum-
mary length limitation, when the maximum total sentence
score of 𝑠0 to 𝑠𝑖−1 is already achieved.

4 EXPERIMENT SETUP

DeepSum is implemented with the machine intelligence li-
brary Tensorflow [1]. It runs on Ubuntu 16.04 with Intel
Core(TM) i7-6700 CPU, GTX1080 GPU and 16G memory.

4.1 Dataset

We evaluate the summarizers over two public bug report
datasets, namely SDS (Summary DataSet) [38] and ADS
(Authorship DataSet) [17], consisting of 36 and 96 bug reports
respectively. Each bug report in the datasets is annotated by
three annotators. The annotators are asked to conclude the
report in around 25% length of the report in their own words.
The concluded sentences are called an Abstractive Ref erence
summary AbsRef. Then the annotators link each sentence in
AbsRef to one or more sentences in the original bug report.
The Extractive Ref erence summary ExtRef consists of the
sentences linked by at least two annotators.

4.2 Baseline Algorithms

We compare DeepSum with seven algorithms in previous stud-
ies. These algorithms summarize bug reports from multiple
aspects, including taking advantage of the conversation-based
characteristic of bug reports (BRC[38], ACS[17]), transferring
classical text summarizers to bug reports (Centroid, MMR,
Grasshopper, DivRank) [29], and manually mining features
from bug reports for summarization (Hurried [27]).

We reproduce the baseline algorithms, since previous stud-
ies evaluate their algorithms under different criteria [29, 38].

In the experiments, an algorithm selects summary sentences
until they reach 25% length of the new bug report in words
[17, 27, 38]. For the supervised algorithms BRC and ACS, we
conduct the Leave-One-Out (LOO) framework [16, 38] and
Two-Fold Cross-Validation (TFCV) framework [41] for eval-
uation, denoted as BRC𝐿𝑂𝑂 and BRC𝑇𝐹𝐶𝑉 , and ACS𝐿𝑂𝑂

and ACS𝑇𝐹𝐶𝑉 . LOO framework [38] trains a summarizer
by all the reports in the same dataset except the one for
summarization. TFCV framework [41] randomly splits the
dataset into two parts for training and testing. LOO frame-
work requires more labeled training data. Due to the lack of
public labeled datasets for bug report summarization, TFCV
framework may better reflect the actual performance of the
supervised algorithms.

4.3 Evaluation Metrics

We first evaluate the algorithms with four metrics proposed
in previous studies for bug report summarization [38], namely
Precison, Recall, F-score, and Pyramid score. For a set of
selected summary sentences sselect, these metrics are:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑁𝑢𝑚hit/𝑁𝑢𝑚selected, (5)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑁𝑢𝑚hit/𝑁𝑢𝑚ExfRef , (6)

𝐹 -𝑠𝑐𝑜𝑟𝑒 =
2 * 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 *𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
, (7)

𝑃𝑦𝑟𝑎𝑚𝑖𝑑 = 𝑁𝑢𝑚TotalLinks/𝑁𝑢𝑚MaxLinks, (8)

where 𝑁𝑢𝑚selected is the number of sentences in sselect, 𝑁𝑢𝑚hit

is the number of sentences in sselect which belongs to ExtRef,
𝑁𝑢𝑚ExtRef is the number of sentences in ExtRef, 𝑁𝑢𝑚TotalLinks

is the total number of times that sentences in sselect are linked
by the annotators, while 𝑁𝑢𝑚MaxLinks is the maximum pos-
sible links for the same number of sentences.

We further evaluate the algorithms with the widely accept-
ed summarization evaluation package Rouge-1.5.5 [23], which
evaluates sselect with the human written summaries AbsRef.
In this study, the metrics1 R-1 and R-2 are used, due to their
abilities in emulating human evaluation procedures [5, 34].

𝑅𝑜𝑢𝑔𝑒-𝑛 =

∑︀
𝑠∈AbsRef

∑︀
𝑔𝑟𝑎𝑚𝑛∈𝑠𝐶𝑜𝑢𝑛𝑡match(𝑔𝑟𝑎𝑚𝑛)∑︀

𝑠∈AbsRef

∑︀
𝑔𝑟𝑎𝑚𝑛∈𝑠𝐶𝑜𝑢𝑛𝑡(𝑔𝑟𝑎𝑚𝑛)

, (9)

where n is the n-gram length, 𝐶𝑜𝑢𝑛𝑡match(𝑔𝑟𝑎𝑚𝑛) is the num-
ber of n-gram co-occurring in both sselect and AbsRef. For
metrics R-1 and R-2, the values of n are 1 and 2 respectively.

4.4 Research Questions (RQ)

RQ1: Do the parameters influence DeepSum’s performance?
RQ2: How do the evaluation enhancement and predefined
field enhancement modules influence DeepSum’s performance?
RQ3: Is DeepSum effective in assigning word weights com-
pared to some alternative strategies?
RQ4: How does DeepSum perform against baselines?
RQ5: How does DeepSum perform under different sentence
selection criteria?

Unsupervised Deep Bug Report Summarization ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

Precision Recall F-score Pyramid R1 R2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 50 100 150 200 250 300

M
et

ri
cs

 v
al

ue

Input training set k1

SDS Dataset

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
et

ri
cs

 v
al

ue

Similarity value θ

SDS Dataset

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Similarity value θ

ADS Dataset

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 101112131415

M
et

ri
cs

 v
al

ue

Salient words number k2

SDS Dataset

1 50 100 150 200 250 300

Input training set k1

ADS Dataset

1 2 3 4 5 6 7 8 9 101112131415

Sailent words number k2

ADS Dataset

Figure 4: Influence of different parameters.

5 EXPERIMENT RESULTS

5.1 Answer to RQ1: Parameter Influence

Fig. 4 shows the influence of similarity value 𝜃, training set
size 𝑘1, and salient words number 𝑘2 with respect to distinct
evaluation metrics over the two datasets.

5.1.1 Similarity Value 𝜃. DeepSum detects the duplicate
versions of an evaluated sentence with 𝜃. To tune 𝜃, we fix
𝑘1=100 and 𝑘2=10, and vary 𝜃 from 0 to 1 with a step
size of 0.1. When 𝜃=1, no similar sentences are considered as
duplications. When 𝜃=0, all the sentences are regarded as the
duplication of the first sentence. Since the first sentence tends
to be important in a bug report, when 𝜃 is small (𝜃 <0.3),
Precision is high. However, other metrics are low as all the
other sentences are regarded as the duplications with zero
element vectors. When 𝜃 increases from 0.6 to 0.9, the metrics
turn to be stable. We set 𝜃=0.9 in the following experiments.

5.1.2 Training Set Size 𝑘1. DeepSum expands the new bug
report with similar ones in the same repository. To tune 𝑘1,
we set 𝜃=0.9 and 𝑘2=10. When 𝑘1=1, it means only the new
bug report for summarization is fed into the deep learning
network which may overfit the network. When 𝑘1 increases
to 300, the performance of DeepSum begins to drop slightly,
since many unrelated bug reports are included in the training
set. DeepSum performs best when 𝑘1 ranges from 100 to 150

1Rouge options [5]: -c 95 -r 1000 -n 2 -m -u -x -f A -p 0.5 -t 0

.

 0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
at

e
o

f
co

v
er

ed
 s

en
t.

Sailent words set k2

SDS Dataset

ADS Dataset

Figure 5: Rate of covered sentences over distinct 𝑘2

over both datasets. The reason may be that, these reports are
similar with the new bug reports in both words distribution
and salient words or sentences, which may be helpful to
measure the salient words for the new bug report. We set
𝑘1=100 in the experiments according to the observation.

5.1.3 Salient Words Number 𝑘2. The salient words number
is used to assign sentence scores in the new bug report. To
investigate 𝑘2, we set 𝜃=0.9 and 𝑘1=100, and 𝑘2 varies from
1 to 15 with a step size of 1. When 𝑘2=1, it means DeepSum
weights the sentences only based on the word of the largest
weight in the bug report. Although this word may repeatedly
occur in the ExtRef summary, it loses the diversity of the
summary, which leads to a relatively high Precision but
low Recall. As 𝑘2 increases, the performance is relatively
stable, namely DeepSum is insensitive to 𝑘2. According to
this observation, we set 𝑘2=10 in the experiments.

For 𝑘2, we avoid to set a large value. First, we find as 𝑘2
increases, long sentences with large amount of words tend
to have high sentence scores, which makes DeepSum fail to
select the right summary sentences. Second, when 𝑘2=10,
DeepSum can cover the majority of sentences in a bug report.
We calculate the rate of covered sentences over distinct 𝑘2
in Fig. 5. We count the number of sentences that sentence
scores are greater than zero and divided this number by the
number of sentences in a dataset. When 𝑘2=1, DeepSum
can assign scores to around 20% sentences in the datasets,
namely 80% sentence scores are zero. Thus, it is hard to
rank and select the 80% sentences. When 𝑘2=10, around
60% sentences are assigned by DeepSum. Since the remaining
sentences may be filtered during pre-processing or not contain
any informative words, DeepSum is able to select the correct
summary sentences then.

Conclusion. By setting these parameters, DeepSum can
handle diverse situations as different metrics are preferred,
e.g., Precision or Recall. Most parameters of DeepSum can
be set in a wide range of values.

5.2 Answer to RQ2: Module Influence

DeepSum utilizes a stepped auto-encoder network with evalu-
ation enhancement module and predefined field enhancement
module to take advantages of bug report characteristics. Ta-
ble 1 shows the influence of these modules. The sign “A”
denotes the evaluation enhancement module and “B” de-
notes the predefined fields enhancement module. The sign
“×” means running DeepSum without a certain module.

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Xiaochen Li, He Jiang, Dong Liu, Zhilei Ren, and Ge Li

Table 1: Influence of Different Modules.

A B Precision Recall F-score Pyramid R1 R2

SDS

√ √
0.621 0.388 0.462 0.624 0.563 0.177

×
√

0.533 0.336 0.397 0.551 0.543 0.160
√

× 0.600 0.381 0.450 0.598 0.552 0.166

× × 0.529 0.339 0.399 0.544 0.540 0.160

ADS

√ √
0.606 0.394 0.457 0.681 0.553 0.249

×
√

0.586 0.382 0.443 0.661 0.548 0.243
√

× 0.577 0.371 0.432 0.661 0.548 0.246

× × 0.558 0.359 0.418 0.639 0.543 0.242

Table 2: Performance on Word Weighting Strategies.

Precision Recall F-score Pyramid R1 R2

SDS

TF Strategy 0.583 0.380 0.445 0.581 0.556 0.167

AE Strategy 0.581 0.370 0.437 0.590 0.555 0.165

DeepSum 0.621 0.388 0.462 0.624 0.563 0.177

ADS

TF Strategy 0.573 0.360 0.425 0.581 0.544 0.240

AE Strategy 0.577 0.366 0.427 0.657 0.549 0.240

DeepSum 0.606 0.394 0.457 0.681 0.553 0.249

Obviously each module has its own contribution to the
final summary. The evaluation enhancement module identifies
frequently discussed sentences in a bug report and filters the
duplicate copies. The predefined fields enhancement module
leverages the information in the predefined fields to identify
the salient words. In addition, when we remove both modules,
the performance is the worst which means these modules are
both useful for summarizing bug reports.

We find that in SDS, removing the evaluation enhancement
module leads to a sharp drop on most metrics, e.g., F-score
drops from 0.462 to 0.397. In contrast, this module has less
impact on ADS. The reason is that, the average number of
sentences per bug report in SDS is 65. The evaluation be-
haviours happen frequently in these long bug reports. While,
the average number of sentences is only 39 in ADS. Most bugs
are fixed before the evaluation behaviours happen. However,
the results show that the modules of DeepSum work well
regardless of datasets with distinct bug reports length.

Conclusion. The evaluation enhancement module and
predefined fields enhancement module have positive influence
on DeepSum. These modules work well over different datasets.

5.3 Answer to RQ3: Word Weighting

This RQ investigates whether the word weighting strategy
of DeepSum in Section 3.3.1 is useful. For this purpose, we
replace the word weighting strategy with two alternative ones
and keep the other modules of DeepSum.

TF Strategy. The first one is a Term Frequency based
strategy. It investigates whether a deep neural network is
necessary. For a new bug report, TF strategy first transforms
the sentences in the report into vectors in the same way as
DeepSum. For fair comparison, the evaluation enhancement
module is applied on each sentence vector. Then we calculate
and rank the words according to their term frequency. The
top 10 words are selected as the salient words. The weights of
words are the values of term frequency. Based on the selected

words and enhanced sentence vectors, TF strategy assigns
sentence scores in the same way as DeepSum.

AE Strategy. The second one is an Auto-Encoder based
strategy. It investigates whether the stepped auto-encoder
network outperforms a standard auto-encoder network in
word weighting. Compared with DeepSum in Fig. 2(B), a
standard auto-encoder only has one input layer f1 and output
layer f1

*, i.e., we remove the inputs f2, f3 and the outputs f2
*,

f3
*. AE strategy works as follows. After collecting the input

training set, we merge all the sentence vectors of different
sentence types into a single vector and feed it to f1. AE
strategy conducts the same training and sentence selection
procedure as DeepSum. The evaluation enhancement and
predefined field enhancement modules are also applied. Unlike
DeepSum, AE strategy assigns weights of all words based
on a three layer compression, namely assigning word weights
based on 𝑉1, 𝑈1, 𝑈2 and the single input vector.

Table 2 shows the performance of different word weighting
strategies. DeepSum outperforms both alternative strategies.
For example, DeepSum has a relative improvement by up
to 5.7% and 7.5% in terms of F-score over the two datasets.
The results show that the stepped auto-encoder network is
superior to a simple word weighting strategy in assigning
word weights, i.e., TF strategy. Meanwhile, words in different
sentence types make distinct contributions to the summary.
Compared with a standard auto-encoder network (AE strat-
egy), DeepSum fully leverages the sentence type information
to make a more accurate measurement on words.

Conclusion. DeepSum’s word weighting strategy outper-
forms the alternatives, i.e., TF strategy and AE strategy.

5.4 Answer to RQ4: Overall Performance

We compare DeepSum with previous algorithms for bug
report summarization [17, 27, 29, 38]. Table 3 and Table 4
show the overall performance of DeepSum averaged by ten
times’ running. A bold value is the best result among all
the algorithms. A grey cell means DeepSum outperforms an
algorithm with p<0.05 by the paired Wilcoxon signed rank
test under Holm’s correction [14].

Overall, DeepSum outperforms the comparative algorithms
in terms of the majority of the metrics. It achieves the state-
of-the-art results on 4 and 6 metrics over the two datasets.
On the SDS dataset, DeepSum outperforms the other algo-
rithms by up to 0.119 and 0.092 in terms of F-score and R-1
respectively. On the ADS dataset, DeepSum still achieves
equal or better performance than the comparative algorithms.
Although different metrics evaluate an algorithm from their
unique aspects, DeepSum outperforms these algorithms in
most cases and is stable on distinct metrics and datasets.

We note that the training sets heavily affect the supervised
algorithms. The ACS algorithm performs well on ADS in
a Leave-One-Out framework, since ADS contains numerous
labeled reports written by the same reporter which fits for
ACS. However, neither such a training set or the training
framework is always available. Hence, when it comes to S-
DS that contains few reports by the same reporter, ACS

Unsupervised Deep Bug Report Summarization ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

Table 3: Overall Comparison on SDS.

Precision Recall F-score Pyramid R-1 R-2

BRC𝐿𝑂𝑂 0.570 0.350 0.400 0.630 0.521 0.140

BRC𝑇𝐹𝐶𝑉 0.524 0.321 0.362 0.580 0.493 0.130

ACS𝐿𝑂𝑂 0.595 0.337 0.400 0.604 0.516 0.135

ACS𝑇𝐹𝐶𝑉 0.562 0.310 0.359 0.572 0.488 0.126

Centroid 0.536 0.269 0.343 0.460 0.471 0.126

MMR 0.617 0.353 0.429 0.551 0.498 0.145

Grasshopper 0.525 0.300 0.368 0.521 0.505 0.135

DivRank 0.591 0.301 0.378 0.546 0.500 0.139

Hurried 0.710 0.300 0.410 0.710 0.525 0.153

DeepSsum 0.621 0.388 0.462 0.624 0.563 0.177

Table 4: Overall Comparison on ADS.

Precision Recall F-score Pyramid R-1 R-2

BRC𝐿𝑂𝑂 0.568 0.350 0.412 0.659 0.517 0.201

BRC𝑇𝐹𝐶𝑉 0.528 0.314 0.388 0.620 0.492 0.180

ACS𝐿𝑂𝑂 0.605 0.391 0.452 0.671 0.546 0.235

ACS𝑇𝐹𝐶𝑉 0.556 0.343 0.400 0.625 0.520 0.211

Centroid 0.488 0.280 0.337 0.561 0.473 0.183

MMR 0.505 0.356 0.395 0.585 0.503 0.206

Grasshopper 0.446 0.337 0.362 0.548 0.504 0.201

DivRank 0.445 0.282 0.325 0.545 0.498 0.202

Hurried 0.580 0.349 0.418 0.637 0.544 0.241

DeepSsum 0.606 0.394 0.457 0.681 0.553 0.249

drops significantly. In addition, if ACS runs in a Two-Fold
Cross-Validation framework, it still performs poorly. This phe-
nomenon can be also observed from BRC𝐿𝑂𝑂 and BRC𝑇𝐹𝐶𝑉 .
In contrast, DeepSum is robust to the labeled training sets.

Another observation is that all the results on R-2 are
low. The reason is that R-2 metric measures the 2-gram
overlap between the selected sentences and the human written
AbsRef summaries. Since the AbsRef summary is written
by annotators according to their understandings of a bug
report, there is no 100% match between the AbsRef summary
and the selected sentences. However, R-2 is still important
in evaluation [5]. In this metric, DeepSum outperforms most
comparative algorithms in a statistic sense.

At last, we find that, Hurried achieves high Precision on
SDS, but loses its dominance to DeepSum on ADS. The
reason may be that, bug reports in ADS are relatively short.
There are not much sentiment information and evaluation
information which are required by Hurried. Hence, DeepSum
has an over 9% relative improvement on F-score to Hurried.

Conclusion. DeepSum shows promising performance for
summarizing bug reports over distinct evaluation metrics.

5.5 Answer to RQ5: Summary Length

Fig. 6 presents the performance of DeepSum on varied sum-
mary lengths. The x-axis is the summary length and y-axis
shows the values of different metrics. We generate a summary
from 15% to 70% length of the bug report [27].

As shown in Fig. 6, DeepSum works well under different
summary lengths. As the summary length increases, Preci-
sion of DeepSum begins to drop, since only a small ratio of
sentences in a bug report belongs to the ExtRef summary.

Table 5: Top Words for Bug Report #170801.

Sentence type Five salient words

f1: software sent. palette colormap gimpimageconvert.c

palette typ option

f2: participator sent. palette image convert use difference

f3: reporter sent. black operation image 1bit tool

Final black image 1bit tool use

Precision Recall F-score Pyramid R1 R2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

15 20 25 30 35 40 45 50 55 60 65 70

M
et

ri
cs

 v
al

ue

Summary length (%)

SDS Dataset

15 20 25 30 35 40 45 50 55 60 65 70

Summary length (%)

ADS Dataset

Figure 6: Results on varied summary lengths.

However, the variation of Precision is small (<10%). In con-
trast, there is a more than 40% promotion on Recall. The
Recall values reach 0.692 and 0.611 on SDS and ADS respec-
tively when we select a summary of 70% bug report length. It
implies that DeepSum successfully ranks the sentences in the
ExtRef summary higher than the other sentences. Similarly,
other metrics also increase. For example, F-score significantly
increases to 0.532 for SDS and 0.512 for ADS at 40% length.
Then, F-score is stable with less than 5% increasement when
the summary length further increases.

However, we note that there is no an optimal summary
length in practise, due to the different reading habits of
developers. Hence, after assigning the scores of sentences in
a bug report, DeepSum is able to efficiently generate the
summary of different lengths by Dynamic Programming.

Conclusion. DeepSum works well at different summary
lengths. With a summary of 40% length, DeepSum can cover
more than half of the sentences in the ground-truth summary.

6 DISCUSSION

6.1 Example by DeepSum

Taking the bug report in Fig. 1 as an example, Table 5
lists the top 5 words weighted by DeepSum with respect to
different sentence types. The network summarizes bug reports
in three aspects. For the input of software sentences, the top 5
words are variables (e.g., colormap, palette type) or file names
(e.g., gimpimage-convert.c) regarding the code snippets. The
important words of the participator sentences focus on the
solutions (e.g., use, different, palette) to the reported bug.
While the salient words of the reporter sentences address the
core problems of the report, namely conversing 1bit image
between black and white is slow. DeepSum stepwise weights
sentences of different types according to their contributions to
the summary. As a result, most information of the reporter’s
sentences is reserved (e.g., black, 1bit); some information
of the participators’ solutions is supplemented (e.g., use);

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Xiaochen Li, He Jiang, Dong Liu, Zhilei Ren, and Ge Li

Table 6: A Partial Summary by DeepSum.

Title (Gnome Bug Report #170801) Converting image from grayscale
to black&white is painfully slow

Sentences

1 1. open a large grayscale image of your choice (e.g. larger than
2000*2000 pixels, maybe a scan result from your scanner)

2 2. use “tools/color tools/threshold” to apply some threshold
choosen arbitrarily.

3 image where to 1bit conversion is either slow or buggy (with
gimp 2.2.4)

4 i’m attaching a test case image. this may be a related bug.
5 the ’mono’ palette option doesn’t even bother to start this pre-

pass because it could only possibly pay off the extra effort if the
entire image is pure black and pure white, which is expected to
be a comparatively rare occurance.

6 “threshold” operation, and then a “convert to 1bit” operation
to actually adjust the internal memory requirements.

and massive information of the software language is filtered.
Since every sentence type may contribute to the summary,
DeepSum automatically decides the filtered information in
this process. It shows DeepSum’s ability in measuring words
according to different sentence types of bug reports.

Table 6 is a partial summary for the bug report in Fig.
1 by DeepSum. In practice, these sentences are labeled in
bold on the original bug report for developers to understand
their context. The summary is in accordance with the above
observations. Sentences #1-#3 are the phenomena and re-
producing steps of the bug, while sentences #4-#6 are the
possible solutions and some important discussions between
the reporter and participators.

6.2 Threats to Validity

The generality of DeepSum should be further studied. To
alleviate this threat, we evaluate DeepSum over all the public
datasets for bug report summarization. We also compare
DeepSum with seven previous summary algorithms over mul-
tiple metrics.

The running time of DeepSum is another threat in real
developing scenarios [15]. DeepSum is a deep neural network
based algorithm which takes 5.66 minutes on average to
summarize a bug report, including 5.57 minutes in training
the network. Since bug report summarization is usually used
for perusing historical bug reports, most reports could be
summarized in an off-line mode. Meanwhile, bug reports in
several years ago may receive less attention due to the changes
of the software architecture and source code. Additionally,
computing in the cloud could also shorten the running time.

7 RELATED WORK

7.1 Bug Report Summarization

Bug report summarization techniques can be classified into
supervised and unsupervised ones. For supervised techniques,
Rastkar et al. migrate features from email summarization to
train bug report summarizers [38]. They find that labeling
domain-specific data sets is important to improve the perfor-
mance of bug report summarizers. Jiang et al.[17] summarize
bug reports in consideration of the reporters’ authorship.

Due to the limitation of labeled data, many unsupervised
text summarization and sentence selection strategies are also
employed [29], including Centroid [37], Maximal Marginal
Relevance (MMR) [6], Grasshopper [51], and Diverse Rank
(DivRank) [30]. Lotufo et al. [27] propose a graph-based un-
supervised algorithm by simulating human reading behaviors,
which achieves relatively high Precision by sacrificing Recall.

In this study, DeepSum is a novel unsupervised algorithm
for bug report summarization, which assigns weights of words
and sentences without human mined features.

7.2 Deep Neural Networks for Software

Recently, several studies utilize deep neural networks to rep-
resent software artifacts. Mou et al. [32] build a tree-based
convolutional neural network to conduct programming repre-
sentation. Peng et al. [35] propose several “coding criteria”
for better leveraging neural networks for software artifacts.

Based on the novel program representation, Wang et al.
[44] and Li et al. [22] utilize convolutional neural networks
to predict the bug-prone source code. Similar ideas are also
employed by Yang et al. [50] for just-in-time defect prediction.
After defect prediction, Lam et al. [20, 21] conduct bug
localization with deep neural networks and Gupta et al. [12]
automatically fix software bugs. In addition, White et al. [45]
conduct code completion with deep neural networks. Gu et
al. [11] recommend API usage sequences with an attention
based recurrent neural network. Raychev et al. [39] and Chen
et al. [25] train deep neural networks to synthesize codes and
If-Then programs respectively.

Besides encoding source code, a few studies encode software
texts in natural languages. Deshmukh et al. [8] detect dupli-
cate bug reports with neural networks. Xu et al. [48] analyze
Stack Overflow posts by convolutional neural networks.

In contrast to previous studies, we attempt to apply a novel
deep neural networks to summarize bug reports, a complex
software artifact with natural languages and source code.

8 CONCLUSION

Bug reports are crucial to fix software bugs. In this study,
we propose an unsupervised deep learning algorithm for bug
report summarization. Our model fully leverages the char-
acteristics of bug reports. Experiments over two public bug
report datasets show that our model outperforms the com-
parative algorithms significantly by adopting domain-specific
characteristics. In the future, we plan to conduct case studies
to investigate whether such an automated model could facili-
tate millions of software developers in perusing bug reports in
a real developing scenario. More information about DeepSum
is at http://oscar-lab.org/people/∼xcli/open/deepsum/

ACKNOWLEDGMENTS

This work is supported in part by the National Natural Sci-
ence Foundation of China under Grants 61722202, 61772107.

http://oscar-lab.org/people/~xcli/open/deepsum/

Unsupervised Deep Bug Report Summarization ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

REFERENCES
[1] Tensorflow an open-source software library for Machine Intelli-

gence. 2017. https://www.tensorflow.org/. (2017).
[2] Xu�̂�n Baldauf. 2005. Converting image from grayscale to

black&white is painfully slow. https://bugzilla.gnome.org/show
bug.cgi?id=170801. (2005).

[3] Nicolas Bettenburg, Rahul Premraj, Sunghun Kim, and Thomas
Zimmermann. 2008. Extracting structural information from bug
reports. In Proceedings of the International Working Conference
on Mining Software Repositories (MSR’08). ACM, 27–30.

[4] Nicolas Bettenburg, Rahul Premraj, Thomas Zimmermann, and
Sunghun Kim. 2008. Duplicate bug reports considered harmful
really?. In IEEE International Conference on Software Mainte-
nance (ICSM’08). IEEE, 337–345.

[5] Ziqiang Cao, Furu Wei, Li Dong, Sujian Li, and Ming Zhou. 2015.
Ranking with recursive neural networks and its application to
multi-document summarization.. In AAAI Conference on Artifi-
cial Intelligence (AAAI’12). 2153–2159.

[6] Jaime Carbonell and Jade Goldstein. 1998. The use of MMR,
diversity-based reranking for reordering documents and produc-
ing summaries. In Proceedings of the 21st Annual International
ACM SIGIR Conference on Research and Development in In-
formation Retrieval. ACM, 335–336.

[7] Debian. 2016. Introduction to the bug control and manipula-
tion mailserver. http://www.debian.org/Bugs/server-control#
summary. (2016).

[8] Jayati Deshmukh, Annervaz K M, Sanjay Podder, Shubhashis
Sengupta, and Neville Dubash. 2017. Towards Accurate Dupli-
cate Bug Retrieval Using Deep Learning Techniques.. In IEEE
International Conference on Software Maintenance and Evolu-
tion (ICSME’17).

[9] Damian Doyle. 2017. Default English stopwords list. http://
www.ranks.nl/stopwords. (2017).

[10] Laura V Galvis Carreño and Kristina Winbladh. 2013. Analysis
of user comments: an approach for software requirements evolu-
tion. In Proceedings of the 2013 International Conference on
Software Engineering (ICSE’13). IEEE Press, 582–591.

[11] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun
Kim. 2016. Deep API learning. In Proceedings of the 24th ACM
SIGSOFT International Symposium on Foundations of Software
Engineering (FSE’16). ACM, 631–642.

[12] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish She-
vade. 2017. DeepFix: Fixing Common C Language Errors by
Deep Learning.. In AAAI Conference on Artificial Intelligence
(AAAI’17). 1345–1351.

[13] Geoffrey Hinton and Tijmen Tieleman. 2012. Lecture 6.5 - RM-
SProp, COURSERA: Neural Networks for Machine Learning.
(2012).

[14] Sture Holm. 1979. A simple sequentially rejective multiple test
procedure. Scandinavian journal of statistics (1979), 65–70.

[15] He Jiang, Xiaochen Li, Zijiang Yang, and Jifeng Xuan. 2017.
What causes my test alarm? automatic cause analysis for test
alarms in system and integration testing. In Proceedings of
the 39th International Conference on Software Engineering
(ICSE’17). 712–723.

[16] He Jiang, Jingxuan Zhang, Xiaochen Li, Zhilei Ren, and David
Lo. 2016. A more accurate model for finding tutorial segments
explaining APIs. In IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER’16),
Vol. 1. IEEE, 157–167.

[17] He Jiang, Jingxuan Zhang, Hhongjing Ma, Nazar Najam, and
Zhilei Ren. 2017. Mining authorship characteristics in bug repos-
itories. Science China Informaction Science 58 (2017).

[18] Sunghun Kim, Kai Pan, and EE Whitehead Jr. 2006. Memories
of bug fixes. In Proceedings of the 14th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering
(FSE’06). ACM, 35–45.

[19] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012.
Imagenet classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems (NIP-
S’12).

[20] AnNgoc Lam, Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N
Nguyen. 2017. Bug localization with combination of deep learning
and information retrieval. In Proceedings of the 25th Interna-
tional Conference on Program Comprehension (ICPC’17). IEEE
Press, 218–229.

[21] An Ngoc Lam, Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N
Nguyen. 2015. Combining deep learning with information re-
trieval to localize buggy files for bug reports (n). In Proceedings
of the 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE’15). IEEE, 476–481.

[22] Jian Li, Pinjia He, Jieming Zhu, and Michael R Lyu. 2017. Soft-
ware Defect Prediction via Convolutional Neural Network. In
IEEE International Conference on Software Quality, Reliability
and Security (QRS’17). IEEE, 318–328.

[23] Chin-Yew Lin. 2004. Rouge: a package for automatic evaluation
of summaries. In Text summarization branches out: Proceedings
of the ACL-04 workshop, Vol. 8. Barcelona, Spain.

[24] Bugzilla Installation List. 2017. https://www.bugzilla.org/
installation-list/. (2017).

[25] Chang Liu, Xinyun Chen, Eui Chul Shin, Mingcheng Chen, and
Dawn Song. 2016. Latent attention for if-then program synthesis.
In Advances in Neural Information Processing Systems (NIP-
S’16). 4574–4582.

[26] Yan Liu, Sheng-hua Zhong, and Wenjie Li. 2012. Query-oriented
multi-document summarization via unsupervised deep learning..
In AAAI Conference on Artificial Intelligence (AAAI’12).

[27] Rafael Lotufo, Zeeshan Malik, and Krzysztof Czarnecki. 2015.
Modelling the Hurried bug report reading process to summarize
bug reports. Empirical Software Engineering 20, 2 (2015), 516–
548.

[28] Apache Lucene. 2016. http://lucene.apache.org/. (2016).
[29] Senthil Mani, Rose Catherine, Vibha Singhal Sinha, and Avinava

Dubey. 2012. Ausum: approach for unsupervised bug report sum-
marization. In Proceedings of the ACM SIGSOFT 20th Interna-
tional Symposium on the Foundations of Software Engineering
(FSE’12). ACM, 11.

[30] Qiaozhu Mei, Jian Guo, and Dragomir Radev. 2010. Divrank:
the interplay of prestige and diversity in information networks. In
Proceedings of the 16th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (SIGKDD’10). ACM,
1009–1018.

[31] Hajime Morita, Ryohei Sasano, Hiroya Takamura, and Manabu
Okumura. 2013. Subtree extractive summarization via submod-
ular maximization.. In Annual Meeting of the Association for
Computational Linguistics (ACL’13). Citeseer, 1023–1032.

[32] Lili Mou, Ge Li, lu Zhang, Tao Wang, and Zhi Jin. 2016. Convo-
lutional Neural Networks over Tree Structures for Programming
Language Processing. In AAAI Conference on Artificial Intelli-
gence (AAAI’16). AAAI Press, 1287–1293.

[33] Mozilla. 2013. Bug writing guidelines. https://developer.mozilla.
org/en-US/docs/Mozilla/QA/Bug writing guidelines. (2013).

[34] Karolina Owczarzak, John M Conroy, Hoa Trang Dang, and Ani
Nenkova. 2012. An assessment of the accuracy of automatic e-
valuation in summarization. In Proceedings of Workshop on E-
valuation Metrics and System Comparison for Automatic Sum-
marization. ACL, 1–9.

[35] Hao Peng, Lili Mou, Ge Li, Yuxuan Liu, Lu Zhang, and Zhi Jin.
2015. Building program vector representations for deep learning.
In International Conference on Knowledge Science, Engineering
and Management. Springer, 547–553.

[36] Martin F Porter. 1980. An algorithm for suffix stripping. Program
14, 3 (1980), 130–137.

[37] Dragomir R Radev, Hongyan Jing, Ma lgorzata Styś, and Daniel
Tam. 2004. Centroid-based summarization of multiple docu-
ments. Information Processing & Management 40, 6 (2004),
919–938.

[38] Sarah Rastkar, Gail C Murphy, and Gabriel Murray. 2014. Au-
tomatic summarization of bug reports. IEEE Transactions on
Software Engineering (TSE’14) 40, 4 (2014), 366–380.

[39] Veselin Raychev, Martin Vechev, and Eran Yahav. 2014. Code
completion with statistical language models. In ACM SIGPLAN
Notices, Vol. 49. ACM, 419–428.

[40] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: a simple
way to prevent neural networks from overfitting. Journal of Ma-
chine Learning Research 15, 1 (2014), 1929–1958.

[41] Yuan Tian, David Lo, and Chengnian Sun. 2013. Drone: Predict-
ing priority of reported bugs by multi-factor analysis. In IEEE
International Conference on Software Maintenance (ICSM’13).
IEEE, 200–209.

[42] Tjekkles. 2011. Java: Open a file (Windows + Mac). https:
//stackoverflow.com/questions/7024031/. (2011).

https://www.tensorflow.org/
https://bugzilla.gnome.org/show_bug.cgi?id=170801
https://bugzilla.gnome.org/show_bug.cgi?id=170801
http://www.debian.org/Bugs/server-control#summary
http://www.debian.org/Bugs/server-control#summary
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
https://www.bugzilla.org/installation-list/
https://www.bugzilla.org/installation-list/
http://lucene.apache.org/
https://developer.mozilla.org/en-US/docs/Mozilla/QA/Bug_writing_guidelines
https://developer.mozilla.org/en-US/docs/Mozilla/QA/Bug_writing_guidelines
https://stackoverflow.com/questions/7024031/
https://stackoverflow.com/questions/7024031/

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Xiaochen Li, He Jiang, Dong Liu, Zhilei Ren, and Ge Li

[43] Paolo Toth. 1980. Dynamic programming algorithms for the zero-
one knapsack problem. Computing 25, 1 (1980), 29–45.

[44] Song Wang, Taiyue Liu, and Lin Tan. 2016. Automatically learn-
ing semantic features for defect prediction. In Proceedings of
the 38th International Conference on Software Engineering
(ICSE’16). ACM, 297–308.

[45] Martin White, Christopher Vendome, Mario Linares-Vásquez,
and Denys Poshyvanyk. 2015. Toward deep learning software
repositories. In Proceedings of the International Working Con-
ference on Mining Software Repositories (MSR’15). IEEE, 334–
345.

[46] Fen Xia, Tie Yan Liu, Jue Wang, Hang Li, and Hang Li. 2008.
Listwise approach to learning to rank: theory and algorithm. In
International Conference on Machine Learning. 1192–1199.

[47] Xin Xia, David Lo, Emad Shihab, and Xinyu Wang. 2016. Auto-
mated bug report field reassignment and refinement prediction.
IEEE Transactions on Reliability 65, 3 (2016), 1094–1113.

[48] Bowen Xu, Deheng Ye, Zhenchang Xing, Xin Xia, Guibin Chen,
and Shanping Li. 2016. Predicting semantically linkable knowl-
edge in developer online forums via convolutional neural network.
In Proceedings of the 31st IEEE/ACM International Conference
on Automated Software Engineering (ASE’16). ACM, 51–62.

[49] Jifeng Xuan, He Jiang, Yan Hu, Zhilei Ren, Weiqin Zou, Zhongx-
uan Luo, and Xindong Wu. 2015. Towards effective bug triage
with software data reduction techniques. IEEE Transactions
on Knowledge and Data Engineering (TKDE’15) 27, 1 (2015),
264–280.

[50] Xinli Yang, David Lo, Xin Xia, Yun Zhang, and Jianling Sun.
2015. Deep learning for just-in-time defect prediction. In IEEE
International Conference on Software Quality, Reliability and
Security (QRS’15). IEEE, 17–26.

[51] Xiaojin Zhu, Andrew B Goldberg, Jurgen Van Gael, and David
Andrzejewski. 2007. Improving diversity in ranking using absorb-
ing random walks.. In Proceedings of NAACL HLT. 97–104.

[52] Thomas Zimmermann, Rahul Premraj, Nicolas Bettenburg,
Sascha Just, Adrian Schröter, and Cathrin Weiss. 2010. What
makes a good bug report? IEEE Transactions on Software En-
gineering (TSE’10) 36, 5 (2010), 618–643.

	Abstract
	1 Introduction
	2 Motivation
	3 Framework of DeepSum
	3.1 Bug Report Pre-processing
	3.2 Unsupervised Network Training
	3.3 Summary Generation

	4 Experiment Setup
	4.1 Dataset
	4.2 Baseline Algorithms
	4.3 Evaluation Metrics
	4.4 Research Questions (RQ)

	5 Experiment Results
	5.1 Answer to RQ1: Parameter Influence
	5.2 Answer to RQ2: Module Influence
	5.3 Answer to RQ3: Word Weighting
	5.4 Answer to RQ4: Overall Performance
	5.5 Answer to RQ5: Summary Length

	6 Discussion
	6.1 Example by DeepSum
	6.2 Threats to Validity

	7 Related Work
	7.1 Bug Report Summarization
	7.2 Deep Neural Networks for Software

	8 Conclusion
	Acknowledgments
	References

