
Many-objective Test Database Generation for SQL

Zhilei Ren1, Shaozheng Dong1, Xiaochen Li2, Zongzheng Chi1, and He Jiang1

1School of Software, Dalian University of Technology
2 University of Luxembourg

zren@dlut.edu.cn dsz201493078@mail.dlut.edu.cn

xiaochen.li@uni.lu czz.dut@163.com jianghe@dlut.edu.cn

Abstract. Generating test database for SQL queries is an important but challeng-

ing task in software engineering. Existing approaches have modeled the task as a

single-objective optimization problem. However, due to the improper handling

of the relationship between different targets, the existing approaches face strong

limitations, which we summarize as the inter-objective barrier and the test data-

base bloating barrier. In this study, we propose a two-stage approach MoeSQL,

which features the combination of many-objective evolutionary algorithm and

decomposition based test database reduction. The effectiveness of MoeSQL lie

in the ability to handle multiple targets simultaneously, and a local search to avoid

the test database from bloating. Experiments over 1888 SQL queries demonstrate

that, MoeSQL is able to achieve high coverage comparable to the state-of-the-

art algorithm EvoSQL, and obtain more compact solutions, only 59.47% of those

obtained by EvoSQL, measured by the overall number of data rows.

Keywords: Test Database Generation, Search Based Software Engineering,

Many-objective Optimization.

1 Introduction

Recent years have witnessed the emergence and the rapid development of evolutionary

computation based test case generation research [1, 2]. Especially, due to the im-

portance in database-centric applications, test database generation for SQL queries has

gained great research interest [3, 4]. The idea is to construct test databases, in pursuit

of certain coverage criteria, such as to exercise all branches (also known as targets, see

Section 2 for details) that can be executed in the SQL query. Due to the intrinsic com-

plexity of SQL features, e.g, JOINs, predicates, and subqueries, test database generation

for SQL queries can be difficult and time-consuming.

In the existing studies, this problem has been modeled as an optimization problem.

Various approaches such as constraint solving and genetic algorithm have been em-

ployed to solve the problem [3, 4, 5]. Among these approaches, EvoSQL [3], a search-

based algorithm, achieves the state-of-the-art results. EvoSQL features the support for

the SQL standard, and has been evaluated over a set of real-world SQL queries.

mailto:zren@dlut.edu.cn
mailto:xiaochen.li@uni.lu
mailto:czz.dut@163.com

2

However, despite the promising results accomplished, we could observe significant

limitations in the existing studies. For example, EvoSQL models the test database gen-

eration problem as a single-objective problem, by designing an objective function that

aggregates the coverage over all the branches. Consequently, such problem solving

mechanism may face great challenges, which are summarized as follows.

(1) Inter-objective relationship barrier: taking EvoSQL as an example, to achieve

satisfactory coverage, the underlying genetic algorithm has to be executed for multiple

times, to cover each branch in a sequential way. Hence, a solution from one pass of

evolution could not take all the branches into account. Also, the solutions within one

evolution process could not help improve the other independent runs of evolution [6].

(2) Test database bloating barrier: EvoSQL achieves the branch coverage by merg-

ing the test databases obtained by the multiple executions of the genetic algorithm. The

final test database may suffer from scalability issues [7], due to the improper handling

of the relationship between different targets. Although EvoSQL adopts a post-process

for reduction, chances are that the reduced test databases are still of large size.

To overcome these challenges, we propose a two-stage algorithm MoeSQL (Many-

objective evolutionary algorithm for SQL) in search of better test data. More specifi-

cally, to tackle the inter-objective relationship barrier, in the first stage, we adopt a

many-objective evolutionary algorithm to avoid redundant computation. The many-ob-

jective algorithm features a corner solution based sorting mechanism, with which we

are able to cover multiple targets in a single evolution process.

To tackle the test database bloating barrier, we further leverage the solutions ob-

tained from the first stage. We decompose the original problem into a series of sub-

problems, and employ a local search operator to achieve better solutions. Due to the

reduction of the search space, it is easier to obtain more compact test database.

By combining the two stages, we develop an integrated framework MoeSQL. To

evaluate MoeSQL, we consider real-world datasets for experiments, with 1888 SQL

queries [3]. Extensive experiments demonstrate that with the many-objective evolution-

ary algorithm, MoeSQL is able to obtain high target coverage of 99.80%, which is

comparable to the state-of-the-art approach EvoSQL. Meanwhile, with the reduction

stage, MoeSQL obtains much more compact test databases, only 59.47% of those pro-

vided by EvoSQL, measured by the overall number of data rows for all the instances.

The main contributions of this paper are as follows:

(1) A many-objective search method is proposed for test database generation of SQL

queries. To the best of our knowledge, this is the first study that solves this problem

with a many-objective approach.

(2) We propose a novel decomposition based local search algorithm to address the

test database bloating issue in SQL test database generation.

(3) We implement a prototype of MoeSQL. The prototype system and the experi-

ment data are available at https://github.com/TheSecondLoop/MoeSQL.

(4) We conduct extensive experiments to demonstrate the effectiveness of MoeSQL

compared with the state-of-the-art algorithm.

3

The rest of the paper is organized as follows. Section 2 describes the background of

test database generation for SQL queries with a motivating example. Section 3 intro-

duces the proposed approach. The empirical study is presented in Section 4. Finally,

the conclusion and future work are given in Section 5.

2 Background and Motivating Example

2.1 Coverage Criteria

For the test database generation task, we intend to populate a set of databases based on

certain coverage criteria. Considering the following SQL query 𝑆 as an example:

SELECT * FROM
Ta JOIN Tb ON Ta.p = Tb.q -- step 1
WHERE (Ta.a = 1) OR (Ta.b = 2); -- step 2

In the query 𝑆, both columns a and b are non-nullable. To thoroughly test S, we

adopt the SQL full predicate coverage criteria [8], which is inspired by the modified

condition decision coverage [9] in software testing studies. The underlying idea is that

given a SQL query, all the possible conditions which contribute to the query should be

tested. For example, if we combine the modified conditions of the predicates in the

WHERE clause of 𝑆 with two predicates, we obtain six queries, generated by the SQL

analysis tool SQLFpc [8]. More specifically, the predicates "Ta.a = 1" and "Ta.b = 2"

correspond to targets 1-3 and 4-6, respectively:

(1) SELECT * FROM Ta JOIN Tb ON Ta.p = Tb.q WHERE (Ta.a = 0) AND NOT (Tb.b = 2);
(2) SELECT * FROM Ta JOIN Tb ON Ta.p = Tb.q WHERE (Ta.a = 1) AND NOT (Ta.b = 2);
(3) SELECT * FROM Ta JOIN Tb ON Ta.p = Tb.q WHERE (Ta.a = 2) AND NOT (Ta.b = 2);
(4) SELECT * FROM Ta JOIN Tb ON Ta.p = Tb.q WHERE NOT (Ta.a = 1) AND (Ta.b = 1);
(5) SELECT * FROM Ta JOIN Tb ON Ta.p = Tb.q WHERE NOT (Ta.a = 1) AND (Ta.b = 2);
(6) SELECT * FROM Ta JOIN Tb ON Ta.p = Tb.q WHERE NOT (Ta.a = 1) AND (Ta.b = 3);

With these targets, the next goal is to construct a set of test databases, so that each

of the six queries, when applied on the test databases, retrieves non-empty result. If

such goal is accomplished, it is claimed that the test databases have achieved complete

coverage on the SQL query under test.

2.2 Test Database Generation

In this study, we focus on search-based test database generation. In these approaches, a

common technique is to encode the test databases as candidate solutions, and model the

objective function based on certain coverage criteria. For example, EvoSQL uses the

concept of physical query plan [10] to divide each target into several execution steps.

The objective function of the test database is determined according to its performance

on each execution step. More specifically, the search problem is defined as follows:

4

Problem 2.1: (single-objective model) Let 𝑅 = {𝑟1, … , 𝑟𝑘} be the set of coverage tar-

gets of the SQL query under test. Find a set of test databases 𝐷 = {𝑡1, … , 𝑡𝑘} to cover

all the coverage targets in 𝑅, i.e., one that minimizes the following objective function:

min 𝐹(𝐷, 𝑅) = ∑ 𝑠𝑡𝑒𝑝_𝑙𝑒𝑣𝑒𝑙(𝑡𝑖 , 𝑟𝑖) + 𝑠𝑡𝑒𝑝_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑡𝑖, 𝐿),𝑘
𝑖=1 (1)

where 𝑠𝑡𝑒𝑝_𝑙𝑒𝑣𝑒𝑙(𝑡𝑖 , 𝑟𝑖) denotes the number of steps that are not executed, and

𝑠𝑡𝑒𝑝_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑡𝑖 , 𝐿) is the distance of 𝑡𝑖 in satisfying the first unsatisfied step 𝐿.

To explain the objective function, consider the distance of target 2 (SELECT * FROM
Ta JOIN Tb ON Ta.p = Tb.q WHERE (Ta.a = 1) AND NOT (Ta.b = 2)) and db 1 in Fig. 1(a).

In the physical query plan of 𝑆, target 2 can be divided into two steps: the first step

considers the predicate in the FROM clause, and then the predicate in the WHERE clause

(see the comments in 𝑆). The predicate in the FROM clause could be satisfied by db 1.

In db 1, an empty result is returned when the predicate in the WHERE clause is exam-

ined. Hence, there are no unexecuted steps, i.e., 𝑠𝑡𝑒𝑝_𝑙𝑒𝑣𝑒𝑙(𝑡𝑖, 𝑟𝑖) = 0. Meanwhile, in

db 1, the predicate "Ta.a = 1" in the WHERE clause is not satisfied. According to the

predicate, we choose the closest value 0 in column a of db 1. Then, the step distance is

calculated as 𝑠𝑡𝑒𝑝_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑡𝑖 , 𝐿) = |0 − 1| = 1 [11]. In this way, we can calculate

the distance between the test database and the coverage target. Further details about the

objective function evaluation could be found in reference [3].

(a) Test databases obtained by EvoSQL (b) A more compact test database

Fig. 1. Example of solutions for query S

Obviously, the objective function is essentially an aggregate form of a multi-objec-

tive problem. Typically, existing approaches such as EvoSQL optimize each term of

the summation in Eq. 1 with respect to each target, in a sequential way. The number of

test databases equals to the number of coverage targets. For example, for query 𝑆,

EvoSQL executes the underlying genetic algorithm six times, and generates six test

databases, each with one row for Ta and Tb, respectively. However, the single-objective

model may face obvious challenges:

(1) Inter-objective relationship barrier: In the SQL query 𝑆, targets 1-3 share the

same predicate "Ta.b = 2". During the evolution towards target 1, the solutions obtained

during the search procedure may also partially satisfy some predicates of targets 2-3.

Although EvoSQL uses the population of the previous pass of evolution as the initial

population for the next pass, the performance of this approach may depend on the in-

vocation sequence of the underlying genetic algorithm. Consequently, single-objective

approach cannot deal with the inter-objective relationship properly.

Ta Tb

Ta.p Ta.a Ta.b Tb.q

db 1 1 0 1 1

db 2 1 1 1 1

db 3 1 2 1 1

db 4 1 0 1 1

db 5 1 0 2 1

db 6 1 0 3 1

Ta Tb

Ta.p Ta.a Ta.b Tb.q

db 7 1 0 1 1

1 1 1

1 2 2

1 2 3

5

(2) Test database bloating barrier: In Fig. 1(b), we present a more compact solution

(db 7 with five data rows) that satisfies all the targets of the query 𝑆. Compared with

the results of EvoSQL, db 7 has the same coverage but less data rows. Interestingly,

although EvoSQL is equipped with a reduction operator, the results in Fig. 1(a) could

not be further simplified.

3 Our Approach

In order to tackle the two challenges of the existing algorithms, we propose our two-

stage algorithm MoeSQL. In the first stage, the algorithm takes the coverage target

generated by SQLFpc as the input, and obtains multiple databases to cover different

targets. These databases serve as an intermediate solution to the problem. In the second

stage, we use these solutions to divide the problem into sub-problems, and solve the

induced problems to achieve a more compact solution.

3.1 Many-objective Test Database Generation

To generate test database with many-objective algorithms, we first modify the problem

definition in Section 2 as follows.

Problem 3.1: (many-objective model) Let 𝑅 = {𝑟1, … , 𝑟𝑘} be the set of coverage targets

of the SQL query under test. Find a test database 𝑡 to cover as many coverage targets

in 𝑅 as possible, and keep the test database compact, i.e., minimize the following 𝑘 +
1 objectives:

 min 𝐹′(𝑡, 𝑅) = (𝑑(𝑡, 𝑟1), 𝑑(𝑡, 𝑟2), … , 𝑑(𝑡, 𝑟𝑘), 𝑠𝑖𝑧𝑒(𝑡))𝑇, (2)

where 𝑑(𝑡, 𝑟𝑖) = 𝑠𝑡𝑒𝑝_𝑙𝑒𝑣𝑒𝑙(𝑡, 𝑟𝑖) + 𝑠𝑡𝑒𝑝_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑡, 𝐿) denotes the distance be-

tween the test database 𝑡 and the coverage targets 𝑟𝑖 as in Eq. 1. The extra objective

𝑠𝑖𝑧𝑒(𝑡) represents the number of data rows in the test database 𝑡. The superscript 𝑇

represents transpose of vector.

The pseudo code of TestDatabaseGen is presented in Algo. 1. The workflow is

similar with most existing many-objective algorithms. In Lines 1-3, a set of solutions

are initialized. More specifically, each solution is encoded as a set of tables, each of

which corresponds to a schema involved in the targets. We extract the constant values

in the targets, and assign the constant values to the fields in initial solutions with prob-

ability 𝑝𝑠. Otherwise, the value for the field is initialized by a random value with prob-

ability (1 − 𝑝𝑠) [12].

Then, in the main loop (Lines 4-15), the evolution process consists of the evaluation,

sorting, selection, and reproduction procedures. For the evaluation procedure, we apply

Eq. 2 over each solution, to calculate the objective values. In particular, we adopt a

dynamic objective strategy [13], i.e., if there exists any new target that can be covered

by a solution, we keep the solution and remove the target from the objective evaluation.

With this strategy, we are able to deal with a relatively large number of objectives. For

the sorting and the selection procedures, we consider the many-objective sorting mech-

anism used in MOSA [6, 14], a well-known many-objective algorithm in the search-

6

based software engineering community. The sorting mechanism features the multi-

level prioritization of the solutions. Within the sorting procedure, the population is cat-

egorized the into levels. For the first level, we consider the best solutions (corner solu-

tions) with respect to each objective. Then, the next level comprises the non-dominated

solutions for the rest solutions. This process continues, until all the solutions are iterated.

With this mechanism, the search could be guided towards covering more targets. Dur-

ing the selection, the elitism strategy is considered, i.e., only when one level is selected,

we consider the solutions in the next level. In the same level, the tournament selection

[15] is applied, so that both intensification and diversification are considered.

Algorithm 1: TestDatabaseGen
Input: coverage set 𝑅, population size 𝑝𝑜𝑝_𝑛𝑢𝑚, seeding probability 𝑝𝑠,
 crossover probability 𝑝𝑐, mutation probability 𝑝𝑚
Output: a set of test database 𝐷
1 𝑠𝑒𝑒𝑑 ← 𝑠𝑒𝑒𝑑_𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑅)
2 𝑎𝑟𝑐ℎ𝑖𝑣𝑒 ← {}
3 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑝𝑜𝑝_𝑛𝑢𝑚, 𝑠𝑒𝑒𝑑, 𝑝𝑠)
4 while stopping criterion not met
5 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑅)
6 if there exists 𝑟𝑖 covered by 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑗

7 𝑎𝑟𝑐ℎ𝑖𝑣𝑒 ← 𝑎𝑟𝑐ℎ𝑖𝑣𝑒 ∪ 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑗

8 𝑅 ← 𝑅 \ {𝑟𝑖}
9 end if
10 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ← 𝑚𝑎𝑛𝑦_𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒_𝑠𝑜𝑟𝑡(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛)
11 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ← 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑝𝑜𝑝_𝑛𝑢𝑚)
12 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 ← 𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑝𝑐)
13 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 ← 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔, 𝑝𝑚, 𝑠𝑒𝑒𝑑)
14 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ← 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ∪ 𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔
15 end while
20 return 𝑎𝑟𝑐ℎ𝑖𝑣𝑒

As for the reproduction operators, we directly adopt the crossover and the mutation

operators of EvoSQL for simplicity, and no special modifications regarding many-ob-

jective algorithms are made in these operators. However, in our preliminary experiment,

we find these operators are effective in general. When the stopping criterion is met, the

evolution terminates. Finally, the archived solutions are regarded as the set of test da-

tabases.

To summarize, we compare TestDatabaseGen with the genetic algorithm used in

EvoSQL. The approach proposed in this study features the following characteristics:

(1) Many-objective model: unlike the existing approaches in which test database

generation is modeled as a single-objective problem, TestDatabaseGen adopts a

many-objective sorting mechanism, so that the solutions in the population could take

all the targets into consideration during the selection. Furthermore, in contrast to

EvoSQL in which the objective values have to be calculated for all the targets sepa-

rately, TestDatabaseGen could handle all the targets in a single evaluation. Hence,

redundant computation could be prevented to some extents.

(2) Dynamic objective strategy: instead of applying static objective function along

the evolution process, TestDatabaseGen dynamically removes targets that have been

7

covered. With this strategy, the number of targets decreases along the evolution process,

and the search could be focused on the uncovered targets. Consequently, the algorithm

scales up well to a relatively large number of targets.

3.2 Sub-problem Decomposition based Reduction

In the second stage, we focus on the test database bloating barrier. To reduce the size

of the test database obtained by TestDatabaseGen, we develop a decomposition based

local search strategy.

The idea is intuitive, i.e., when a candidate database covers one or more targets, it

means that there are a series of data rows in the database that can satisfy the predicates

in the SQL queries. However, it is possible that not all the data rows are contributive to

the coverage. In other words, only a part of the data rows leads to the satisfaction of the

predicates. Hence, we need to filter out the values with no contribution, and generate

more compact test databases. To realize the reduction effect, we consider the following

problem:

Problem 3.2: Let 𝐷 = {𝑡1, … , 𝑡𝑚} be a set of test databases. For each database 𝑡𝑖 ,

𝑓(𝑡𝑖) = {𝑟𝑖1, … , 𝑟𝑖𝑛} ⊆ 𝑅 represents the targets covered by 𝑡𝑖 . Find a subset of data-

bases 𝑇′ = {𝑡1
′ , … , 𝑡𝑐

′} that minimizes the following function:

min ∑ 𝑠𝑖𝑧𝑒(𝑡𝑖
′)𝑐

𝑖=1 , (3)

𝑠. 𝑡. ⋃ 𝑓(𝑡𝑖
′)𝑐

𝑖=1 = ⋃ 𝑓(𝑡𝑖)
𝑚
𝑖=1 ,

where 𝑠𝑖𝑧𝑒(𝑡′𝑖) indicates the number of data rows in the test database 𝑡𝑖
′.

Unfortunately, with the increase of the targets, the number of data rows in the data-

base 𝑇 will increase accordingly, which leads to the search space explosion problem

[16]. Therefore, we propose a decomposition strategy to transform the original problem

into a set of sub-problems. Given two databases 𝑡1 and 𝑡2, we can construct a sub-prob-

lem, in search of a database with more compact size in a small neighborhood. More

specifically, the sub-problem is defined as follows.

Problem 3.3: Let 𝐷 = {𝑡1, 𝑡2} be a set of two test databases. For each database 𝑡𝑖 ,

𝑓(𝑡𝑖) = {𝑟𝑖1, … , 𝑟𝑖𝑛} ⊆ 𝑅 represents the targets covered by 𝑡𝑖. Find a new database 𝑡′
that minimizes the following function:

min 𝑠𝑖𝑧𝑒(𝑡′) (4)

𝑠. 𝑡. 𝑓(𝑡′) = 𝑓(𝑡1) ∪ 𝑓(𝑡2)

In this way, we can find the solution of the original problem by solving the sub-

problem for each pair of test databases.

The main workflow of the second stage is presented in the pseudo code of Algo. 2

TestDatabaseReduction. In the main loop, we set all the solutions in the population as

unreached, to indicate whether the solution should be involved in the generation of the

next sub-problem. In Lines 3-4, we select two individuals in the population to construct

the sub-problem. Then, the LocalSearch operator is applied, to obtain a solution to the

induced sub-problem. In Lines 6-9, we verify the solution obtained by the local search

operator. If a more compact solution is achieved, the two individuals under examination

8

will be replaced with the reduced solution returned by LocalSearch. Otherwise, we

continue investigating other pairs of individuals that have not been investigated, until

all the individuals have been reached.

In particular, our method adopts a local search operator to solve the induced sub-

problem. As presented in Algo. 3, a hill climbing approach is considered.

Algorithm 2: TestDatabaseReduction
Input: databases 𝐷, coverage set 𝑅
Output: Best solution
1 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ← 𝐷

2 𝑢𝑛𝑟𝑒𝑎𝑐ℎ𝑒𝑑 ← {〈𝑡𝑖 , 𝑡𝑗〉| 𝑡𝑖 , 𝑡𝑗 ∈ 𝐷, 𝑖 < 𝑗}

3 while 𝑢𝑛𝑟𝑒𝑎𝑐ℎ𝑒𝑑 not empty
4 select a database pair 〈𝑡1, 𝑡2〉 from 𝑢𝑛𝑟𝑒𝑎𝑐ℎ𝑒𝑑
5 𝑡′ ← 𝐋𝐨𝐜𝐚𝐥𝐒𝐞𝐚𝐫𝐜𝐡(𝑡1, 𝑡2, 𝑅)
6 if 𝑠𝑖𝑧𝑒(𝑡′) < 𝑠𝑖𝑧𝑒(𝑡1) + 𝑠𝑖𝑧𝑒(𝑡2)
7 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ← 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 \ {𝑡1, 𝑡2} ∪ 𝑡′
8 𝑢𝑛𝑟𝑒𝑎𝑐ℎ𝑒𝑑 ← 𝑢𝑛𝑟𝑒𝑎𝑐ℎ𝑒𝑑 ∪ {〈𝑡𝑖 , 𝑡′〉|𝑡𝑖 ∈ 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛}

9 𝑢𝑛𝑟𝑒𝑎𝑐ℎ𝑒𝑑 ← 𝑢𝑛𝑟𝑒𝑎𝑐ℎ𝑒𝑑 ∩ {〈𝑡𝑖 , 𝑡𝑗〉| 𝑡𝑖 , 𝑡𝑗 ∈ 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 𝑖 < 𝑗}

10 else
11 𝑢𝑛𝑟𝑒𝑎𝑐ℎ𝑒𝑑 ← 𝑢𝑛𝑟𝑒𝑎𝑐ℎ𝑒𝑑\{〈𝑡1, 𝑡2〉}
12 end if
13 end while
14 return 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

Algorithm 3: LocalSearch
Input: database 𝑡1, database 𝑡2, coverage set 𝑅
Output: reduced database
1 𝑡∗ ← 𝑚𝑒𝑟𝑔𝑒(𝑡1, 𝑡2)
2 while 𝑠𝑖𝑧𝑒(𝑡) ≥ 𝑠𝑖𝑧𝑒(𝑡1) + 𝑠𝑖𝑧𝑒(𝑡2) and 𝑡∗ changed in while
3 𝑡 ← 𝑡∗
4 for each data row 𝑟 of 𝑡
5 if 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛({𝑡 \ {𝑟}}, 𝑅) not deteriorated
6 𝑡 ← 𝑡 \ {𝑟}
7 end if
8 end for
9 for each data row 𝑟 of 𝑡
10 if 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛({𝑡∗ \ {𝑟}}, 𝑅) not deteriorated
11 𝑡∗ ← 𝑡∗ \ {𝑟}
12 break for
13 end if
14 end for
15 end while
16 return 𝑡

In Algo. 3, a first-improvement local search is realized. More specifically, we con-

struct an incumbent database by merging the two input databases (Line 1). Then, we

iteratively examine each data row of the incumbent database (Lines 2-15). If we observe

that, the deletion of a data row does not deteriorate the coverage metric, we simply

delete this data row to generate a new database (Line 5-7). Otherwise, we recover the

9

deletion, and make a perturbation accordingly (Lines 9-14). Then, we restart the inves-

tigation from the perturbed database. The traversal continues, until all the data rows

have been iterated. By embedding the local search operator in Algo. 2, we are able to

accomplish the reduction of the test databases.

As a brief summary, in this section, we present the TestDatabaseReduction stage.

The reduction algorithm features a hill climbing based local search operator to explore

the possibility of minimizing the test databases obtained by the first stage. In the next

section, we would conduct extensive experiments to evaluate the proposed approach.

4 Experimental Results

4.1 Research Questions

In this section, we investigate the performance of MoeSQL. Our experiment focuses

on the following three Research Questions (RQs).

RQ1: How does MoeSQL perform in terms of coverage metrics?

RQ2: How does MoeSQL perform in terms of the runtime and the size metrics?

RQ3: How does MoeSQL performs over different instances?

In these RQs, RQ1 is used to verify the feasibility of MoeSQL. RQ2 is adopted to

examine whether our algorithm tackles the existing challenges properly. RQ3 intends

to investigate the trade-off between runtime and size metrics achieved by MoeSQL.

To evaluate MoeSQL, we adopt EvoSQL, the state-of-the-art algorithm as the base-

line of our experiments. Besides, we also propose a variant algorithm (denoted as

MoeSQLv) as a comparative approach. In this variant, MoeSQL will terminate after

the first stage, without further consideration of the scalability issue. In this way, we can

investigate the contribution of both stages.

Table 1. Statistics of the benchmark instances

Feature \ #targets 0 1-2 3-4 5-6 7-8 9-10 11-15 16-20 21+

Predicates 57 1278 424 54 27 10 14 21 3

JOINs 1831 41 3 1 11 1 - - -

Subqueries 1851 37 - - - - - - -

Functions 1735 149 2 2 - - - - -

Columns 59 1271 413 85 16 13 14 7 10

Targets - 645 337 370 310 95 55 27 49

In the experiments, the parameter settings follow those of EvoSQL. More specifi-

cally, we set the population size 𝑝𝑜𝑝_𝑛𝑢𝑚 to 50. Seeding probability 𝑝𝑠 is set to 0.5.

Crossover probability 𝑝𝑐 is set to 0.75. Due to the various operations in mutation oper-

ator, the mutation probability 𝑝𝑚 is a set of numbers. The mutation probability for in-

serting, deleting, and duplicating operation is set to 1/3, the row change mutation prob-

ability is set to 1, and the NULL mutation probability is set to 0.1. Our experiments run

under a PC with an Intel Core i5 2.3 GHz CPU, 16 GB memory, and Windows 10. All

algorithms are implemented in Java 1.8. Our experiments use three datasets provided

10

by EvoSQL. Over the instances, we execute each algorithm five times. There are 1888

SQL queries and 10338 coverage targets in total. The statistics of these SQL queries

are shown in Table 1. Because SQLFpc may generate some targets that cannot be cov-

ered theoretically, we manually examine and delete these targets to ensure that the rest

targets could be covered, given sufficient runtime.

4.2 Experimental Results

Investigation of RQ1. We first present the coverage statistics of the comparative ap-

proaches in Table 2. In the table, the first column indicates the number of targets. Col-

umns 2-3 represent the instance coverage (number of fully covered instances). Columns

4-5 are the target coverage (number of covered targets). The coverage of MoeSQLv is

the same as MoeSQL, because the second stage of MoeSQL does not alter the coverage

metric. From the table, the following phenomena could be observed:

 (1) MoeSQL achieves high coverage over all the instances. Similar as EvoSQL,

MoeSQL can cover all targets over instances with less than 10 coverage targets. With

the increase of the number of targets, the performance of both algorithms decreases.

Table 2. The instance coverage and the target coverage of each algorithm

#targets Instance Coverage Target Coverage

EvoSQL MoeSQL/MoeSQLv EvoSQL MoeSQL/MoeSQLv

1-2 645 / 645 645 / 645 1232 / 1232 1232 / 1232

3-4 337 / 337 337 / 337 1095 / 1095 1095 / 1095

5-6 370 / 370 370 / 370 1970 / 1970 1970 / 1970

7-8 310 / 310 310 / 310 2314 / 2314 2314 / 2314

9-10 95 / 95 95 / 95 892 / 892 892 / 892

11-15 53 / 55 53 / 55 679 / 699 686 / 699

16-20 26 / 27 25 / 27 473 / 485 481 / 485

20+ 42 / 49 46 / 49 1633 / 1651 1647 / 1651

 (2) In terms of the target coverage, MoeSQL performs slightly better than EvoSQL.

Over all the instances, MoeSQL is able to cover 99.80% of targets. Meanwhile, the

target coverage by EvoSQL is 99.52%.

(3) In terms of instance coverage, the results of EvoSQL and MoeSQL are very

close. However, the performance of the two algorithms is not the same. EvoSQL per-

forms better over instances with more than 16 but less than 20 coverage targets. Mean-

while, MoeSQL has a higher coverage in instances with more than 20 coverage targets.

Answer to RQ1: MoeSQL can completely cover 99.63% of all instance, which is com-

parable to the state-of-the-art approach.

Investigation of RQ2. In this RQ, we are interested in the efficiency of MoeSQL. We

calculate the runtime and the size of test database (measured by the number of data

rows in the test databases). The statistics are presented in Table 3. The table is organized

as follows. The first column indicates the number of targets of the queries. Columns 2-

4 represent the median runtime statistics in seconds, for EvoSQL, MoeSQLv, and

MoeSQL, respectively. Similarly, columns 5-7 are associated with the size statistics,

11

measured by the average number of data rows in the test database, for the three ap-

proaches. From the table, we observe that:

Table 3. The runtime and the test database size statistics of each algorithm

#targets Runtime (s) Size (#data rows)

EvoSQL MoeSQLv MoeSQL EvoSQL MoeSQLv MoeSQL

1-2 0.03 0.02 0.02 2.00 2.00 2.00

3-4 0.04 0.02 0.02 3.00 3.00 3.00

5-6 0.07 0.02 0.04 5.00 5.00 5.00

7-8 0.25 0.13 0.20 8.00 7.00 7.00

9-10 0.62 0.32 0.61 11.00 10.00 9.00

11-15 2.13 1.11 3.87 16.00 13.40 11.00

16-20 10.15 7.76 116.30 40.40 33.40 14.40

20+ 130.32 108.36 1483.15 54.00 40.00 26.00

(1) MoeSQLv achieves the minimum runtime over all instances. The time of

MoeSQLv is almost half that of EvoSQL in instances with less than 15 targets. And

over other instances, the runtime of MoeSQLv is also significantly less than EvoSQL.

(2) MoeSQL performs the best over instances with less than 10 targets. Due to the

second stage, the runtime of the whole algorithm is longer than MoeSQLv. With the

increase of the number of targets, the gap between the two variants also increases.

(3) When considering all the instances, without the second stage, MoeSQLv is able

to outperform EvoSQL by 22.62%, in terms of the size metric of the test database.

Moreover, with the reduction mechanism, MoeSQL is able to further reduce the test

database size by 17.91%. For the instances with more than 20 coverage targets, the

overall number of data rows is reduced by up to 68.59%, compared with EvoSQL.

Answer to RQ2: the advantage of MoeSQL in runtime is more reflected over instances

with small number of coverage targets. At the same time, MoeSQL can significantly

reduce the size of the test database, especially for complex instances. Although the sec-

ond stage of MoeSQL costs extra runtime, the local search operator reduces the size of

the database. For most instances, the time consumption is acceptable.

Investigation of RQ3. To answer RQ3, we classify all instances according to the per-

formance of each algorithm. According to the two performance indicators, i.e., runtime

and size, we categorize all the instances into the following four types:

Type A: MoeSQL outperforms EvoSQL in terms of both indicators.

Type B: MoeSQL outperforms better than EvoSQL in terms of runtime, and the size

of MoeSQL is the same as EvoSQL.

Type C: The size of MoeSQL is better than EvoSQL, but the runtime metric of

MoeSQL is inferior to that of EvoSQL.

Type D: MoeSQL fails to outperform EvoSQL in terms of either indicator.

We summarize the number of instances of each type. The statistics of these type are

shown in Fig. 2(a). According to the figure, we observe that:

(1) MoeSQL is more time efficient than EvoSQL over the majority (types A and B,

1523 / 1888) of instances. Over these instances, MoeSQL can find test databases of

12

same or more compact size than EvoSQL. In particular, over (370 / 1888) 19.60% of

instances, MoeSQL outperforms EvoSQL for both performance indicators.

(2) Over (201 / 1888) 10.65% of instances, MoeSQL consumes more time than

EvoSQL, but is able to achieve more compact solutions. Only over (164 / 1888) 8.69%

of instances, MoeSQL is dominated by EvoSQL.

(a) Statistics of instance types (b) Runtime-size comparison

Fig. 2. Comparison between EvoSQL and MoeSQL

To gain more insights, we plot the runtime and the size metrics obtained by EvoSQL

and MoeSQL over all the instances in Fig. 2(b). From the figure, we observe that the

points for MoeSQL are concentrated in the area closer to the origin, which to some

extents demonstrates the ability of MoeSQL to balance the runtime and the size.

Answer to RQ3: MoeSQL performs better than EvoSQL over most instances, and is

able to achieve moderate trade-off between the runtime and the size metrics.

5 Conclusion and Future Work

In this paper, we present a novel two-stage algorithm MoeSQL to solve the test data-

base generation for SQL queries. The proposed approach features the combination of a

many-objective evolutionary algorithm and a local search based reduction mechanism,

to tackle the inter-objective barrier and the test database bloating barrier. Experimental

results over real-world datasets demonstrate the effectiveness of MoeSQL.

 Despite the promising results, there is still room for improvement. For example, the

local search based reduction is time consuming. To mitigate the limitation, an interest-

ing direction is to consider very large neighborhood search [17] or surrogate based ac-

celeration mechanisms [18]. If feasible, the efficient reduction mechanisms may enable

more advanced algorithms, such as reduction during evolution.

Acknowledgement. This work is supported in part by the National Key Research and

Development Program of China under grant no. 2018YFB1003900, and the National

Natural Science Foundation of China under grant no. 61772107, 61722202.

370

1153

201 164

0

200

400

600

800

1000

1200

1400

type A type B type C type D

1E+0

1E+1

1E+2

1E+3

1E-3 1E-2 1E-1 1E+0 1E+1 1E+2 1E+3 1E+4
Si

ze
 (

#
d

a
ta

 r
o

w
s)

Runtime (s)

EvoSQL MoeSQL

13

References

1. Fraser, G., Arcuri, A., McMinn, P.: Test suite generation with memetic algorithms. In: Pro-

ceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp.

1437–1444. ACM, New York, (2013)

2. Arcuri, A.: RESTful API Automated Test Case Generation with Evo-Master. ACM Trans-

actions on Software Engineering and Methodology 28(1), 1-37 (2019)

3. Castelein, J., Aniche, M., Soltani, M., Panichella, A., van Deursen, A.: Search-based test

data generation for SQL queries. In: Proceedings of the 40th international conference on

software engineering, pp. 1220-1230. ACM, Gothenburg, (2018)

4. Suárez-Cabal, M., de la Riva, C., Tuya, J., Blanco, R.: Incremental test data generation for

database queries. Automated Software Engineering 24(4), 719-755 (2017)

5. Shah, S., Sudarshan, S., Kajbaje, S., Patidar, S., Gupta, B., Vira, D.: Generating test data for

killing SQL mutants: A constraint-based approach. In: 2011 IEEE 27th International Con-

ference on Data Engineering, pp. 1175-1186. IEEE, Hannover (2011)

6. Panichella, A., Kifetew F., Tonella P.: Automated Test Case Generation as a Many-Objec-

tive Optimisation Problem with Dynamic Selection of the Targets. IEEE Transactions on

Software Engineering 44(2), 122-158 (2018)

7. Tuya, J., de la Riva, C., Suárez-Cabal, M., Blanco, R.: Coverage-Aware Test Database Re-

duction. IEEE Transactions on Software Engineering 42(10), 941-959 (2016)

8. Tuya, J., Suárez-Cabal, M., de la Riva, C.: Full predicate coverage for testing SQL database

queries. Software Testing, Veriication and Reliability 20(3), 237-288 (2010)

9. Chilenski, J., Miller, S.: Applicability of modified condition/decision coverage to software

testing. Software Engineering Journal 9(5), 193-200 (1994)

10. Garcia-Molina, H., D Ullman, J., Widom, J.: Database system implementation. Prentice

Hall, Upper Saddle River (2000)

11. Korel, B.: Automated software test data generation. IEEE Transactions on Software Engi-

neering 16(8), 870-879 (1990)

12. Rojas, J., Fraser, G., Arcuri, A.: Seeding strategies in search-based unit test generation. Soft-

ware Testing, Verification and Reliability 26(5), 366-401 (2016)

13. Rojas, J., Vivanti, M., Arcuri, A., Fraser G.: A detailed investigation of the effectiveness of

whole test suite generation. Empirical Software Engineering 22(2), 852-893 (2017)

14. Panichella, A., Kifetew F., Tonella P.: Reformulating Branch Coverage as a Many-Objective

Optimization Problem. In: 2015 IEEE 8th International Conference on Software Testing,

Verification and Validation (ICST), pp. 1-10. IEEE, Graz (2015)

15. Goldberg, D., Deb, K. A Comparative Analysis of Selection Schemes Used in Genetic Al-

gorithms. In: Proceedings of the First Workshop on Foundations of Genetic Algorithms, pp.

69-93. Elsevier, Indiana (1991)

16. Ramírez, A., Romero, J., Ventura, S.: A survey of many-objective optimisation in search-

based software engineering. Journal of Systems and Software 149, 382-395 (2019)

17. Ghoniem, A., Flamand, T., Haouari, M.: Optimization-Based Very Large-Scale Neighbor-

hood Search for Generalized Assignment Problems with Location/Allocation Considera-

tions. INFORMS Journal on Computing. 28(3), 575-88 (2016)

18. Pan, L., He, C., Tian, Y., Wang, H., Zhang, X., Jin, Y.: A classification-based surrogate-

assisted evolutionary algorithm for expensive many-objective optimization. IEEE Transac-

tions on Evolutionary Computation, 23(1), 74-88(2018)

