
Detecting JavaScript Transpiler Bugs with
Grammar-guided Mutation

Le Chena, Zhide Zhoua, Xiaochen Lia, He Jianga, b∗
aSchool of Software, Dalian University of Technology, Dalian, China

bthe Key Laboratory for Artificial Intelligence of Dalian, Dalian 116024, China
clhiker@mail.dlut.edu.cn, cszide@gmail.com, {xiaochen.li, jianghe}@dlut.edu.cn

Abstract—JavaScript (JS) transpilers translate JS programs
from a higher grammar standard to a lower one, which are
widely used to ensure the compatibility of JS features in software
(e.g., browsers). However, JS transpilers can have bugs that lead
to unintended behavior in the translated JS programs. Existing
JS program generation approaches could not test JS transpilers
effectively since it is hard to generate a large number of valid
JS programs in specific grammar standards. In this paper, we
propose TransFuzz, a grammar-guided mutation approach to find
JS transpiler bugs.

The key insight of TransFuzz is to generate syntax-specific
JS programs by mutating the abstract syntax trees (ASTs) of JS
programs with the guidance of the specific grammar. First, Trans-
Fuzz parses JS programs collected from open-source platforms
into ASTs to obtain subtrees and leaf nodes containing specific
JS syntax. Then, a grammar-guided approach is developed in
TransFuzz to mutate the ASTs of the given JS programs guided
by different versions of JS grammar standards. In addition,
mutation operations could introduce grammatical errors. To
improve the correctness of the mutated ASTs, TransFuzz develops
heuristic-based correction rules to correct reference errors, type
errors, and syntax errors in the mutated ASTs. After correction,
the mutated ASTs are converted to the corresponding JS pro-
grams. Finally, based on differential testing, TransFuzz utilizes
the generated JS programs to detect JS transpiler bugs.

Our evaluation shows that TransFuzz significantly outper-
forms existing JS program generation approaches by triggering
47.82%–385.71% more JS transpiler bugs. Within ten months,
we have reported 73 bugs on two popular JS transpilers babel
and swc, of which 58 have been confirmed.

Index Terms—JS transpiler testing, Grammar-guided muta-
tion, Differential testing.

I. INTRODUCTION

JavaScript (JS) transpilers are the tools to translate JS pro-
grams written in different JS standards, which are widely used
in fields such as code translation [1], [2], code obfuscation [3],
[4], compiler optimization [5], [6], and static code analysis [7],
[8]. JS transpilers are designed to solve JS compatibility issues.
JS syntax complies with the script programming language
specification ECMAScript (ES) by ECMA (European Com-
puter Manufacturers Association) [9]. Since 2015, ECMA has
updated an ES standard every year. The rapid development of
ES standards brings many compatibility and security issues
to the applications required to parse JS programs, since the
applications may not support the latest ES standard. Fig. 1
is an example that a popular JS transpiler babel transpiles
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(a) Code snippet before transla-
tion (in the ES6 standard)

(b) Code snippet after translation
(in the ES5 standard)

Fig. 1: Code snippet transpiled from ES6 to ES5 standards.

the arrow function in the ES6 standard into the anonymous
function in the ES5 standard.

JS transpilers are widely used by developers. They have
become an important part of browser application development
toolchains. When developing browser applications, designers
choose the ES development standard according to their needs.
Then, they use JS transpilers to convert JS programs from a
higher ES standard version into the version supported by the
browser. At present, many well-known JS tools have integrated
JS transpilers, such as React [10], Next.js [11], Vue [12],
Ember [13], and Angular [14]. However, the correctness of JS
transpilers has a great impact on the accuracy and reliability
of these JS tools, since bugs in JS transpilers could inject
unexpected behaviors into the transpiled JS programs. It is
important to design approaches to test JS transpilers and ensure
the correctness of the translation.

Currently, there have been a lot of studies about the quality
assurance in terms of JS engines [15]–[18]. Some typical ap-
proaches are CodeAlchemist [19] and Montage [20]. CodeAl-
chemist randomly combines code snippets from different JS
programs to generate new JS programs. Montage converts JS
programs into ASTs; it uses deep learning to learn the AST
structures, and predicts new subtree tokens to generate JS
programs with different syntax structures. However, existing
approaches for JS engine testing may not be applicable to
JS transpiler testing since it is hard to generate effective JS
programs for this task. On the one hand, when transpiling JS
programs from a source ES standard (e.g., ES6) to a target
ES standard (e.g., ES5), JS transpilers only process code lines
containing the source ES syntax1 (i.e., the ES6 syntax). JS
programs generated by existing JS engine testing approaches
may not contain plenty of source ES syntax to effectively
test JS transpilers. On the other hand, JS transpilers can

1In this paper, we use JS syntax and ES syntax In this article, we can use
JS syntax and ES syntax interchangeably.



refuse to transpiler JS programs when the programs contain
grammar errors, though such programs can be accepted by
JS engines if the program branches containing syntax errors
are not executed. Hence, many JS programs generated by JS
engine testing approaches such as deep learning cannot be
used for JS transpiler testing. Hence, to effectively test JS
transpilers, it is important to generate a large number of valid
(i.e., with no grammar errors) JS programs with many ES
syntax in the specific ES standard.

To generate such JS programs, we designed TransFuzz,
a grammar-guided mutation fuzzer for JS transpiler testing.
TransFuzz has four main phases, i.e., syntax-specific dataset
construction, grammar-guided AST mutation, AST correction,
and bug identification. TransFuzz first collects JS programs
from GitHub that meet the specified ES syntax require-
ments. TransFuzz parses these JS programs into ASTs to
collect syntax-specific subtrees and literal leaf nodes. During
grammar-guided AST mutation, TransFuzz extracts an ES
grammar dictionary from different versions of ES standards.
Given an AST of a JS program, TransFuzz mutates the AST
at the coarse-grained (subtree) and fine-grained (leaf) levels
with the guidance of the ES grammar dictionary. The mutation
operations follow the ES standards to ensure that the generated
ASTs have the syntax features we need, thus generating
a large number of syntax-specific JS programs. After AST
mutation, TransFuzz corrects the generated ASTs and converts
them into JS programs for JS transpiler testing. This phase
corrects reference errors, type errors, and syntax errors in the
mutated ASTs with a set of heuristic-based correction rules,
to ensure the validity of the generated JS programs. After
these steps, JS programs for JS transpiler testing are generated.
For bug identification, TransFuzz uses differential testing [21]
to identify syntax and semantics bugs in JS transpilers. We
find syntax bugs with syntax checking tools, which determine
whether transpilers completely translate the source syntax to
the target syntax. Meanwhile, we compare the semantics of JS
programs before and after translation. We find semantics bugs
by analyzing the semantic inconsistency.

To evaluate TransFuzz, we conducted experiments for ten
months on babel and swc, two of the most widely used open
source JS transpilers. TransFuzz found 73 bugs, of which 58
have been confirmed. In addition, we compare TransFuzz with
four state-of-the-art JS program generation approaches for
JS engine testing. Experimental results show that TransFuzz
significantly outperforms the baselines by up to 47.82%–
385.71% in terms of the bug-finding capability on average. We
find both grammar-guided AST mutation and AST correction
strategies in TransFuzz positively affect the effectiveness of
TransFuzz in finding bugs. The impact of the parameter of
TransFuzz is also analyzed in the experiment.

The main contributions of this paper include the following:
• To the best of our knowledge, this is the first work

focusing on JS transpilers testing, which can provide a
new research direction for analyzing JS toolchains.

• We propose TransFuzz, an efficient testing approach, to
test JS transpilers. TransFuzz found 73 bugs in real-world

(a) babel bug#139832 (b) swc bug#41923

(c) swc bug#50304 (d) babel bug#139925

Fig. 2: Examples of JS transpiler bugs.

JS transpilers, of which 58 have been confirmed.
• We implement TransFuzz as a practical tool for JS

transpiler testing.
To support open science, after the paper review is over, we

will upload the code and dataset to the open platform.
The rest of this paper is organized as follows. Section II

introduces the background of this paper. Section III discusses
the details of TransFuzz. We conduct extensive experiments to
evaluate TransFuzz in Section IV. Sections V and VI introduce
the threats to validity and the related work, respectively.
Finally, Section VII concludes this study and future work.

II. BACKGROUND

In this section, we introduce the background of JS tran-
spilers and examples of real-world JS transpiler bugs. We also
explain the challenge of finding JS transpiler bugs.

A. JS Transpilers and Their Bugs

JS transpilers are tools to translate JS programs from a
higher ES standard to a lower one. We call the syntax of
the program before the translation as the source syntax, and
after the translation as the target syntax. In this process, JS
transpilers first statically check the syntax correctness of JS
programs. Programs containing syntax bugs are refused to
transpile. If the syntax is correct, JS transpilers transpile code
snippets in JS programs, which have the source syntax, into
the target syntax required by users. The semantics of the code
snippet before and after translation should remain the same.
As shown in Fig. 1, the JS transpiler babel converts the
code snippet written with the ES6 syntax into the ES5 syntax.
During the translation, babel rewrites this code snippet to
conform to the syntax features of the ES5 standard.

However, during the translation, JS transpilers may not
always behave correctly. According to the definition of JS
transpilers, we classify the error behavior of JS transpilers
into two categories, i.e., syntax bugs and semantic bugs.

Syntax bugs are usually caused by two reasons. First,
JS transpilers refuse to transpile syntactically correct code
snippets (referred as “refuse translation bug”). For example,

2https://github.com/babel/babel/issues/13983
3https://github.com/swc-project/swc/issues/4192
4https://github.com/swc-project/swc/issues/5030
5https://github.com/babel/babel/issues/13992
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Fig. 3: Framework of TransFuzz for detecting JS transpiler bugs.

the code snippet in Fig. 2a is syntactically correct. However,
it is rejected by babel because of the Unicode character in
line 2. Another reason for syntax bugs is that the code snippet
transpiled by JS transpilers does not fully conform to the target
syntax features (referred as “incomplete translation bug”). As
shown in Fig. 2b, the “/” label of “/Hello World/” in line 3 is
the syntax “DotAll RegExp flag”, which is only available after
the ES9 standard; however, the JS transpiler swc mistakenly
retains this line when transpiling the code snippet to the ES5
standard.

Semantic bugs mean the semantics of JS programs before
and after translation are changed. The most common mani-
festation of semantic bugs is that the transpiled JS programs
cannot be executed correctly (referred as “runtime error bug”).
For example, when executing the transpiled code snippet in
Fig. 2c with nodejs, the code snippet reports an error
“TypeError: Array is not a constructor”, though the original
code snippet is correct. Another manifestation of semantic
bugs is that the execution results of JS programs before and
after translation are inconsistent (referred as “inconsistency
bug”). As shown in Fig. 2d, the output of the code snippet is
[undefined , undefined , undefined ] after being transformed by
babel. However, it was [1, 2, 3] before translation.

JS transpiler bugs can mislead developers. For example, a
bug in the tool react native is caused by a decorator
bug in babel (i.e., babel bug#20038). The root cause of
bug#9224 in the tool Nuxt is due to the loose configuration
bug in babel. A more serious bug example is the OOM
problem caused by the unlimited growth of the babel-register
cache (i.e., babel bug#5667). This bug affects multiple
downstream components, including Mochajs, TypeORM,
React-static, and Domiii. Since JS transpilers do not
execute JS programs, developers can hardly associate any
bugs in JS programs with JS transpilers. Currently, many
popular front-end frameworks and tools have integrated with
JS transpilers, which motivates the need to propose effective
approaches for JS transpilers testing.

B. Challenge

To our knowledge, there is currently no work to test JS
transpilers. One of the most relevant studies is JS engine
testing. However, JS transpilers are different from JS engines.
JS engines are a kind of virtual machine that are designed
specifically to interpret and execute JS programs. In contrast,
JS transpilers focus on transforming JS programs based on ES
standards. Specifically, there are two main differences between
JS engine testing and JS transpiler testing.

First, when transpiling JS programs from a source ES
standard to a target ES standard (e.g., from ES6 to ES5),
only code lines containing the source ES syntax (i.e., the ES6
syntax) are proceed. Although existing studies for JS engine
testing [17], [19], [20], [22] aim to generate JS programs, they
are not designed to generate JS programs written in specific
ES syntax (e.g., ES6). As a result, most code lines generated
by these approaches cannot be used to test JS transpilers.

Second, JS transpilers only accept grammatically correct
programs, while JS engines can ignore errors in code snippets
that are not executed. Existing approaches such as deep
learning can be used to train a model with JS programs
containing specific ES syntax to generate new and similar
JS programs. Such JS programs may not be suitable for JS
transpiler testing also, due to grammar errors. Although these
grammar errors can be used for JS engine testing as long as the
corresponding code lines are not executed, JS transpilers can
refuse to transpiler these JS programs after the static syntax
check.

Therefore, due to the rapid development of ES standards,
the challenge of JS transpiler testing is to effectively generate
a large number of valid JS programs that satisfy specific ES
syntax features.

III. APPROACH

In this section, we present technical details of TransFuzz
for JS transpiler testing. As shown in Fig. 3, TransFuzz
has four main components, namely syntax-specific dataset
construction, grammar-guided AST mutation, AST correct,
and bug identification. The basic idea of TransFuzz is to
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mutate and generate JS programs with specific ES syntax
based on an ES grammar dictionary and an AST-level syntax
error correction.

TransFuzz first collects a set of syntax-specific JS programs
and parses them as ASTs, resulting in two datasets, namely
subtree dataset and leaf dataset. Next, in the grammar-guided
AST mutation component, we propose a mutation technique
to mutate the AST of a JS program with the guidance of
ES grammar and the two datasets. This component aims to
increase the ratio of specific ES syntax in the AST. All
the mutated ASTs are then corrected by the AST correction
component to ensure the correctness of the mutated ASTs.
With these components, JS programs for JS transpiler testing
are generated. In the bug identification component, we test
JS transpilers using the newly generated JS programs. We
compare JS programs before and after translation on both
syntax and semantic levels to determine JS transpiler bugs.
The output of TransFuzz is a set of JS transpiler bugs and the
corresponding bug-triggering JS programs.

A. Syntax-specific Dataset Construction

Since TransFuzz detects JS transpilers by generating new JS
programs using mutation techniques, we first need to construct
a set of seed JS programs. We use keywords to search open-
source repositories from GitHub, which contain JS programs
written in different ES standards. The keywords are names
of ES standards such as ‘ES6’ to ‘ES13’ and ‘ES2015’ to
‘ES2022’. We rank the repositories by their popularity and
select the top 2,000 repositories as a corpus. Next, we use
JSHint, a static code analysis tool, to find JS programs
that contain syntax in certain ES standards (e.g., ES6). We
take these JS programs as seed JS programs for JS transpiler
testing.

For the collected JS programs, we convert them into ASTs.
For each AST, we identify and record the subtrees which
are rooted with the source ES syntax features (e.g., the ES6
syntax) to create a subtree dataset. Specifically, we build a
list including all declarations in the AST, such as variables,
functions, and objects. We conduct preorder traversal on the
AST. If a non-terminal symbol in the AST is the source ES
syntax, we record the subtree rooted at this non-terminal. Next,
we traverse this subtree and count all the referenced identifiers

Fig. 5: The general format of an ESTree non-terminal.

in the subtree. Finally, we construct a subtree dataset, which
contains the non-terminal symbol of a subtree, the subtree
itself, and the definition of referenced identifiers in the subtree.

In addition, we record the literal leaves in the AST. These
literals contain user-defined content that appears in the JS
programs, usually including strings, number, and regular ex-
pressions. We collect literals from the assembly, as well as
manually added some special boundary literals like None,
NaN , and Bigint. By the above operation, we get a leaf
dataset containing literal data.

An example of our AST parsing process is presented in
Fig. 4. We use Acorn [23], a tiny JS parser, to parse the code
snippet in Fig. 1a. Fig. 4 abstractly shows the AST parsing
result by Acron. In this AST, we keep the subtree rooted at
the non-terminal ArrowFuncExpr, since it’s a new syntax
added in ES6. At the same time, we also save the declaration
information of item, because the item is referenced in this
subtree. Regarding leaf nodes, we save “+” and “1” in the
leaf dataset, because these literals contain user-defined content,
which can be used as material for leaf node mutation.

B. Grammar-guided AST Mutation

In this subsection, we introduce the grammar-guided AST
mutation phase, including ES grammar dictionary establish-
ment and AST mutation.

1) ES Grammar Dictionary Establishment: We mutate
ASTs to generate JS programs containing specific ES syntax.
We guide the AST mutation by establishing an ES grammar
dictionary, which contains all the available ES syntax for
all ES standards. The ES grammar dictionary is used to
retrieve the relationship of different ES grammar. We parse
different versions of ES standards to construct the ES grammar
dictionary with ESTree. ESTree [24] is a format as a lingua
franca for tools that manipulate JS programs. ESTree uses
custom EBNF (Backus-Naur Form) [25] syntax to describe
ES syntax in ES standards. ESTree supports ES standards
from ES5 to ES2022. By parsing the ESTree, we can get the
relationship of different ES syntax, which is considered as the
ES grammar dictionary.

Fig. 5 shows the general format of the ESTree, which repre-
sents a non-terminal syntax. In the first line, the interface
is a keyword, and Node is the name of the non-terminal.
Keywords extend and “<:” are optional. extend means
that the current non-terminal is an extension of a previous
version non-terminal, while “<:” means that the current non-
terminal inherits the contents of the parent non-terminal. In
between the curly braces are the rules for that non-terminal



(a) ES5 syntax: ForInStatement. (b) ES6 syntax: ForOfStatement.

Fig. 6: An example of inheritance relationship constraint.

(a) ES5 syntax: VariableDeclara-
tion.

(b) ES6 syntax: VariableDeclara-
tion.

Fig. 7: An example of extension relationship constraint.

(i.e., Node). A non-terminal can have multiple rules. Each line
in curly braces in Fig. 5 represents a rule. For example, in the
second line, the left side of “:” is a unique key, which is used to
connect nodes in the AST. We can find these keys on the edge
in Fig. 4. The right side of “:” contains multiple alternative
values separated by “|”. These values can be another non-
terminal (e.g., Statement in line 3) or keywords in ES syntax
(e.g., “script” in line 2).

2) Grammar-guided AST Mutation: To generate more JS
programs for JS transpiler testing, we mutate existing JS
programs collected in Section III-A. Traditional mutation tools
(e.g., AFL [26]) use mutation strategies such as bit flipping,
splice, and havoc, which are mostly syntactically blind. These
mutation strategies are not suitable for JS transpiler testing,
since they have a lower chance to generate JS programs with
specific syntax (e.g., new ES syntax features in the source
ES standard). To address this issue, we use a grammar-guided
mutation strategy. Our mutation strategy is based on two con-
straints in ES standards, namely the inheritance relationship
constraint and the extension relationship constraint.

(1) Inheritance relationship constraint. Non-terminals in ES
standards have a parent-child relationship. When we select
a non-terminal to mutate, the mutated non-terminal needs to
inherit the same parent or grandparent non-terminal as the
original non-terminal. We take the mutation of ForInStatement
as an example to explain this constraint. In Fig. 6a ForInState-
ment in the ES5 standard inherits from Statement. In Fig. 6b
ForOfStatement is a new syntax in the ES6 standard; it inherits
from ForInStatement, which is the grandchild of Statement.
When we mutate ForInStatement, we can first find the parent
non-terminal Statement. Then, we select the descendant non-
terminals of Statement. We find ForOfStatement is new syntax
in the ES6 standard and satisfies the inheritance relationship
constraint. Hence, we can replace the current non-terminal
ForInStatement with ForOfStatement to generate a JS program
with more source ES syntax.

(2) Extension relationship constraint. ES standards are
backward compatible and extensible. New ES syntax can be
easily added to the definition of existing ES syntax, either by

Algorithm 1 Non-terminal subtree mutation (replace subtree)

Input: an AST for mutation, subtree dataset database, ES
grammar dictionary model, maximum trials maxTrial

Output: Mutated AST
1: iter = 0
2: while iter < maxTrial do
3: esTarNode = randFindTarPos(AST )
4: parNonTerm = getParent(model, esTarNode)
5: if parNonTerm == None then
6: iter ++
7: continue
8: else
9: dscNonTerms = getDSC(model, parNonTerm)

10: newNonTerm = random(dscNonTerms)
11: newSub = getSubtree(newNonTerm, database)
12: replaceSub(AST , esTarNode, newSub)
13: break
14: end if
15: end while

overwriting existing rules or adding new rules. As shown in
Fig. 7a and Fig. 7b, VariableDeclaration contains rules for
different kind rules in ES5 and ES6 standards. VariableDec-
laration in the ES5 standard only contains “var”, while the
ES6 standard extends the VariableDeclaration by adding “let”
and “const”. When we select a leaf node in an AST such as
“var” to mutate, we can randomly choose one of “let” and
“const” to replace the leaf to generate new JS programs with
ES6 syntax.

We retrieve the aforementioned syntax relationships from
the ES grammar dictionary, which are then used to guide the
AST mutation of a JS program. Specifically, TransFuzz has
two types of mutations, i.e., non-terminal subtree mutation
and leaf node mutation.

(1) Non-terminal subtree mutation. We use the ES grammar
dictionary to guide the mutation, which aims to generate
ASTs containing specified ES syntax. Specifically, we conduct
preorder traverse on the AST. Each non-terminal symbol in the
AST is taken as a node. We traverse the AST, randomly select
a subtree St rooted with the target ES syntax, and mutate it.
Our mutation has two main operations:

• Add or delete subtrees. According to the ES standard,
some non-terminals in an AST can be optional, such
as nodes Statement and ModuleDeclaration in line 3 of
Fig. 5. Therefore, during mutation, we can either insert
or delete a subtree rooted with this kind of nodes (i.e.,
Statement or ModuleDeclaration nodes).

• Replace subtrees. We search the ES grammar dictio-
nary for the possible source ES syntax (i.e., ES6) non-
terminals that can replace the target ES5 non-terminal
of St according to the inheritance relationship constraint.
For the possible source ES syntax, we search subtrees,
which are rooted with such syntax, in the subtree dataset.
We randomly select one of the subtrees to replace St.



Algorithm 1 specifies the subtree replacement process. We
first initialize the number of iterations iter and the maximum
number of trials maxTrial for finding non-terminal positions of
source ES syntax (e.g., ES5) for mutation (lines 1–2). We use
function randFindTarPos to randomly select a non-terminal
related to the target ES syntax from the AST (line 3). Next,
we look up the parent node of this non-terminal by getParent
function. If the node has no parent node, we go back to line 3
to find a new position in lines 3–7. If we fail to find a position
after maxTrial trials, we stop mutating this AST. When the
position is found, we search the ES syntax of the parent
node through the ES grammar dictionary. We use function
getDSC, constrained by the inheritance relationship, to find
descendant non-terminals to satisfy the source ES syntax (e.g.,
ES6). We randomly select one non-terminal source ES syntax
newNonTerm (lines 8–10). For the searched target ES syntax,
we turn to the subtree dataset to randomly select a subtree
rooted with the searched newNonTerm, and use this subtree to
replace the subtree at position esTarNode (lines 12–15).

(2) Terminal leaf mutation. Terminal leaf mutation is also
grammar-guided. As shown in Algorithm 2, we search the AST
and use the function getSon to find a node with no child (i.e.,
a terminal leaf) (lines 2). We first use function isLiteral to
determine whether the node is a literal leaf (line 3). For literal
leaves, such as string, number, and boolean, we randomly
select a literal from the leaf dataset built in Section III-A
(line 4). For non-literal leaves, they are usually keywords, we
use the function getLeaf to find new keywords terminals that
are extended in the source ES standard (e.g., ES6) based on the
extension relation constraint, and randomly get one of the new
terminals by function randGetLeaf (lines 6–7). For example,
when we find a node such as VariableDeclaration, we can
find three options (i.e., “var”, “let”, and “const” as shown in
Fig. 7b) by querying the ES grammar dictionary. We randomly
select one of options “let” and “const” as a leaf, since they
are only in the source ES syntax (i.e., ES6). When we have a
newNode, we can use it to replace the selected node (lines 10).

Based on the mutation operations, TransFuzz generates new
ASTs with more source ES syntax. TransFuzz first mutates an
AST with the non-terminal subtree mutation. We randomly
add, delete, or replace a subtree in the AST. After this, we
continue mutating the AST with the terminal leaf mutation.
We treat a round of non-terminal and terminal mutations as
a complete mutation process. To increase the complexity of
the mutated AST, TransFuzz repeats the complete mutation
process p times (a parameter) to generate the final AST.

C. AST Correction

Mutation operations can introduce grammatical errors. The
main errors in the AST mutation of TransFuzz are reference
errors, type errors, and syntax errors. First, mutation opera-
tions assemble non-terminal and terminal nodes in different
contexts, which brings reference errors. Second, the complex
expression we call may contain undefined structures, causing
type errors. Third, the ES grammar dictionary we build does
not include the complete ES standard. The reason is, when

Algorithm 2 Terminal leaf mutation

Input: an AST for mutation, the leaf dataset leaves, ES
grammar dictionary model, ES standard ESs

Output: Mutated AST
1: for node in AST do
2: if node.getSon() == None then
3: if isLiteral(model, node) then
4: newNode = random(leaves, node)
5: else
6: keywords = getLeaf (model, node, ESs)
7: newNode = randGetLeaf (keywords)
8: end if
9: end if

10: changeLeaf (AST , node, newNode)
11: end for

taking into the complete ES standard to build an ES grammar
dictionary, its difficulty is equivalent to rewriting a JS engine.
The missing of some special syntax (e.g., ‘await expression
must be in async function’) in the ES grammar dictionary
can lead to syntax errors. Since JS transpilers can reject JS
programs with grammatical errors, we use AST correction to
resolve these three types of errors to increase the number of
corrected JS programs for JS transpiler testing.

Reference errors. Regarding variable references, JS has
two key features, i.e., weak typing and declaration hoisting.
Weakly typing means variable types in JS can be automat-
ically inferred. Declaration hoisting is that JS variables are
usually valid within a certain scope; functions, variables, and
declarations can be hoisted to the very top of the scope.
Based on these two features. we collect all referenced but
undeclared variables, function names, and class names in one
scope. We declare these objects at the top of the scope. We
add declarations for subtrees that are added or replaced when
mutating, because they may refer to variables that are not
declared in the current program. We also keep declarations
of replaced or deleted subtrees, since they may be referenced
elsewhere in the program. The former is saved when we store
a subtree in Section III-A. For the latter, we statically parse
a replaced subtree and extract the declared subtrees within it.
We add declarations to the top of the scope.

Type errors. We check function calls and complex expres-
sions in the ASTs. We resolve these types of errors by adding
an Object structure to the program header. The properties of
the structure are defined according to the references in the
code.

Syntax errors. For syntax errors, we process each special
syntax differently by modifying specific parameters in the
AST. For example, YieldExpress in JS can only appear in
generative functions. In the AST, this grammatical feature can
be expressed as that, if the subtree of a function declaration
contains the non-terminal YieldExpress, we need to set the
“generator” leaf as “TRUE” to startup the generative expres-
sion. Therefore, to resolve syntax errors caused by missing
generator function, we can traverse the AST and set the



“generator” leaf nodes of all function declaration subtrees
containing YieldExpress to be “TRUE”.

After AST correction, we use escodegen, a third-party
tool to generate code from ASTs, to convert ASTs into JS
programs [27]. We check the syntax and semantics of the
generated JS programs with tools JSHint and nodejs,
respectively. We only keep JS programs that can pass the two
checks.

D. Bug Identification

Since the output of JS transpilers is source code, we use
differential testing to determine whether the translation result
contains bugs.

We take JS programs corrected in Section III-C as testcases
to test JS transpilers. When a bug is found, we record the
error information and the corresponding JS programs. Since
our JS programs have been checked using tools JSHint and
nodejs before translation, the reported errors are likely to be
caused by JS transpiler bugs. TransFuzz mainly collects two
types of bugs, i.e., syntax bugs and semantic bugs.

For syntax bugs, we use JSHint to check every success-
fully transpiled JS program. If the transpiled JS program con-
tains non-target syntax or wrong syntax, it means JS transpilers
cannot complete the translation caused by the potential bugs
of JS transpilers. We report these potential bugs to developers
after analysis.

For semantic bugs, we check whether the semantics of JS
programs before and after translation is changed. The most
common situation is that the transpiled JS program gets an
error when being executed by JS interpreters. In this case,
it is obvious that the JS transpiler has introduced a bug
to the JS program. Another more obscure situation is that
the transpiled program can be executed correctly. However,
when we compare the execution results of the program before
and after translation, results are inconsistent. This case also
indicates a JS transpiler bug. To identify semantic bugs,
we use nodejs to execute JS programs before and after
translation. nodejs is developed based on Google v8 JS
engine, which supports the latest ES standard. If a transpiled
JS program cannot be executed by nodejs, we transpile
the same JS program with another JS transpiler. When the
execution results are inconsistent, we manually analyze the
reason of the semantic inconsistency. If the inconsistency is
not caused by random behaviors (such as random) in the code
snippet, we consider it as a bug.

The output of this step is a set of JS transpiler bugs and the
corresponding source JS programs.

IV. EVALUATION

To assess the effectiveness of TransFuzz, we conducted
experiments based on the following research questions (RQs).

• RQ1: Is TransFuzz effective in finding bugs for real-
world JS transpilers?

• RQ2: What is the effectiveness of TransFuzz compared
with existing JS program generation approaches?

TABLE I: Bugs found by TransFuzz on the latest development
versions of babel and swc

Syntax bugs Semantic bugs Invalid or Total
Refuse Incomplete Runtime Inconsistency duplicate

translation translation error

babel 5 0 8 5 11 29
swc 15 5 10 10 4 44

• RQ3: What is the impact of each component on the
effectiveness of TransFuzz?

• RQ4: What is the effect of the parameter of TransFuzz?
RQ1 evaluates the ability of TransFuzz to find bugs in real-

world JS transpilers (i.e., two popular JS transpilers babel
and swc). RQ2 focuses on the effectiveness of existing JS
program generation approaches in discovering JS transpiler
bugs, compared with TransFuzz. RQ3 verifies the effectiveness
of the main components in TransFuzz. RQ4 evaluates the
influence of the parameter in TransFuzz.

TransFuzz is implemented with 3,000 lines of code in
Python 3.8. As for the conversion of JS programs and ASTs,
we use the third-party tools Acorn and escodegen, respec-
tively. In addition, we use the official default configuration
files for babel and swc, which are configured to convert
programs written in the ES6 standard and above (named as
ES6plus) into ES5 programs.

We collected 2,000 repositories, which have JS programs
containing the ES6plus syntax from GitHub with the process
in Section III-A. The preprocessed corpus contains a total of
22,473 JS programs, each of which contains one or more code
snippets with ES6plus syntax features. This corpus is used to
construct the subtree dataset and the leaf dataset.

Our experiment was performed on a Linux server with
Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz (32 cores 64
threads) and 256GB RAM, running on Ubuntu 20.04 (x86 64).

A. Answer to RQ1: Effectiveness of TransFuzz

To assess the ability of TransFuzz on finding real-world JS
transpiler bugs, we conducted an experiment over ten months
from November 2021 to July 2022. We mainly test the latest
development version of babel and swc. The time of one
testing process is about three days since the development
version of JS transpilers is frequently updated6.

We submit bugs found by TransFuzz to developers for
confirmation. Given a bug, we first search for bugs previously
found and bugs in the bug repository of JS transpilers accord-
ing to the keywords in the error message. We manually analyze
the top search results to de-duplicate bugs. In addition, we
reduce the bug-triggering JS programs to facilitate developers
for quick bug confirmation. We decompose a JS program into
a set of code segments and delete the code segment from the
AST one by one. After deletion, we convert the AST back to a
JS program. If the trimmed program can still trigger the same

6The testing process is not continuous since we have to occasionally resolve
deployment and hardware issues.



Fig. 8: JS transpiler refuses to translate correct code7.

Fig. 9: Transpiled JS program contains source ES syntax8.

bug, we repeat the above process until the reduced JS program
cannot trigger the bug. After the above operations, we get the
reduced JS program, which is submitted to developers.

As shown in Table I, TransFuzz finds a total of 73 bugs,
including 29 bugs for babel (18 confirmed as unique bugs)
and 44 bugs for swc (40 confirmed as unique bugs). A total
of 15 bugs were flagged by developers as invalid or duplicate
bugs. In the experiment, TransFuzz finds more bugs in swc
than in babel. The reason is that swc is a project launched
in 2020. Such a younger project could have more bugs. In
addition, TransFuzz finds many semantic bugs in the two JS
transpilers (i.e., 13 in babel and 20 in swc). Such bugs are
very important to find, since semantic bugs can change the
semantics of JS programs after translation. It could be difficult
for developers to locate these bugs, as developers have to be
familiar with the source code of JS transpilers. Hence, a tool
like TransFuzz is important for JS developers to finds these
bugs.

We introduce some examples of the four types of bugs found
by TransFuzz.

Refuse Translation: An example of this type of bug is
babel bug#1485. The bug has been confirmed by developers.
Fig. 8 shows the POC (proof of concept) code snippet. The first
line of the code snippet, when transpiled by babel, triggers
an error: “Res is not defined”. However, the code snippet
itself is correct, which can be executed by nodejs. This bug
comes from babel’s dependency package regjsparser
0.8. Although the bug has been fixed in regjsparser 0.9,
the developers of babel did not update the package. Our
bug-triggering JS program is generated by the fine-grained
mutation of leaf nodes of the AST for a JS program. TransFuzz
uses a randomly selected regex value leaf to replace the
original number value, which triggers this bug.

Incomplete Translation: Fig. 9 shows a bug reported as swc
bug#4190. In the figure, the spread operator “...” is a new
syntax of ES6. Unfortunately, the code snippet translated by
swc still retains the spread operator. The error came from
the es-compat package. Developers fixed this bug on the
same day as we reported it. This bug-triggering JS program
comes from our non-terminal subtree mutation, in which the
subtree rooted at SpreadElement is added to the arguments list
of CallExpression.

Fig. 10: Transpiled JS program reports an error9.

Fig. 11: Results before and after translation are inconsistent10.

Runtime Error: An example of this type of bug is babel
bug#14401. The brief POC is shown in Fig. 10. When we
check the transpiled code snippet by nodejs, it reports an
error: “Function statements require a function name”. This bug
comes from the babel’s generator. For anonymous functions
in parentheses in the figure, babel does not conduct the
translation. Since babel directly removes the parentheses
during printing, it causes the function in parentheses to report
an error. This bug was marked as a good first issue by
developers. TransFuzz replaces CallExpression on the AST
subtree with an anonymous ArrowFunctionExpression, and
generates the JS program.

Inconsistency: Fig. 11 shows an example of this type of
bug (i.e., swc bug#2836). The original code snippet outputs
“false” after running through nodejs; however, the transpiled
code snippet outputs “undefined”. The reason of this bug is that
the method helper.instanceof does not cast Symbol.hasInstance
call to boolean. We find this bug by our non-terminal subtree
mutation, which mutates an existing subtree with the static
method subtree Symbol.hasInstance.

Conclusion. TransFuzz reports 73 bugs on two real-world
JS transpilers, of which 58 are confirmed. The experimental
results show that TransFuzz is effective at finding bugs in real-
world tools.

B. Answer to RQ2: Comparison with Baselines

In this RQ, we compare the number of bugs found by
TransFuzz with four state-of-the-art JS program generation
approaches, which are used to test JS engines. They are
CodeAlchemist, DIE, Montage, and JEST. CodeAlchemist and
Montage use code snippet composition and deep learning to
generate JS programs, respectively. DIE is an AFL-based mu-
tation fuzzer that mutates JS programs at the AST level. JEST

7https://github.com/babel/babel/issues/14857
8https://github.com/swc-project/swc/issues/4190
9https://github.com/babel/babel/issues/14401
10https://github.com/swc-project/swc/issues/2836



Fig. 12: Bugs found by TransFuzz and baselines in 72 hours.

is a JS program generator, which can automatically generate
JS programs based on the ES grammar model extracted from
ES standards. Among these four approaches, CodeAlchemist
and JEST are generation-based algorithms, while DIE and
Montage mainly focus on JS program mutation.

Our experiment is conducted on old released versions of
babel 7.14.8 and swc 1.2.103, such that we can find a stati-
cally significant number of bugs for comparisons. We execute
each approach 72 hours. When a JS program is generated, we
use the bug identification strategy in Section III-D to find bugs.
For a detected bug, if it does not exist in the latest development
version, we take the bug as a real fixed bug; otherwise, we
report it to developers for confirmation.

Fig. 12 shows the number of bugs found by TransFuzz and
baselines. TransFuzz finds more bugs than all state-of-the-art
JS fuzzers during the testing period. TransFuzz finds a total of
46 bugs, while CodeAlchemist, DIE, Montage, and JEST find
only 24, 22, 23, and 7 bugs, respectively. Besides, the bugs
found by TransFuzz cover the other four tools, and 12 bugs
are the only ones found by TransFuzz. These four baselines
differ in their ability to find different types of bugs.

CodeAlchemist has a good effect on finding runtime error
bugs, but it has not found inconsistency bugs. In contrast, DIE
finds more inconsistency bugs than runtime error bugs. After
analysis, we find that CodeAlchemist usually introduces more
complex syntax structures, which makes it find many runtime
bugs. Regarding DIE, DIE’s mutation retains the subtle syntax
structure and type information in the JS program. Most of the
mutated program context is preserved, but the syntax structure
is not fully mutated. Hence, it finds many inconsistency bugs.
Montage uses deep learning to generate JS programs. Although
it can find bugs across the four categories, the number of bugs
found is limited by the high number of invalid programs with
grammar errors. JEST only finds 7 syntax bugs. The reason
is the input of JEST is the ES standard, and the output is a
piece of code snippets. JEST does not generate JS programs
with complex structures to trigger semantic bugs.

For TransFuzz, the input of TransFuzz includes the original
JS corpus and the ES grammar dictionary. It retains the context

TABLE II: Bug statistics of TransFuzz and its variants.

Min. bugs Max. bugs Avg. bugs p-value

TransFuzzNC 15 24 20 <.001
TransFuzzNG 19 25 22.5 .002

TransFuzz 21 30 26.1 -

of the seed JS program based on introducing the source syntax
structure and surpasses the above four baselines in the ability
to find syntax and semantic bugs.

Conclusion. TransFuzz finds in total 46 bugs of different
types in 72 hours of testing, outperforming the baselines
by up to 47.82%–385.71% in terms of the bug-finding ca-
pability. TransFuzz significantly outperforms state-of-the-art
approaches for JS transpiler testing.

C. Answer to RQ3: Impact of Different Components

Grammar-guided AST mutation and AST correction are the
main components of TransFuzz for generating JS programs
with specific ES standards. These components first mutate the
AST of a JS program with the guidance of an ES grammar
dictionary and then correct the mutated AST to generate
the final JS program for testing. To access the impact of
these components, we design two variants of TransFuzz, i.e.,
TransFuzzNG and TransFuzzNC . TransFuzzNG conducts AST
mutation without the guidance of the ES grammar dictionary
established in Section III-B1. TransFuzzNC removes the AST
correction step, which directly uses JS programs after the
grammar-guided AST mutation for testing. We use TransFuzz
and the two variants to test the same versions of babel and
swc used in RQ2. We conduct the experiment 10 times. Each
time we execute these approaches for 12 hours on the two JS
transpilers, and analyze the number of bugs they found.

Table II presents the experiment result. The second to
third columns are the minimum and the maximum number
of bugs found by TransFuzz and its variants respectively
over the ten times of experiments. The fourth column is
the average number of bugs they found. TransFuzz finds a
higher maximum, minimum, and average number of bugs than
the other two variants. We performed a Mann-Whitney U-
test for the total number of bugs found by TransFuzz and
variants. The p-values show that TransFuzz is significantly
better than TransFuzzNC and TransFuzzNG. In addition, we
find that TransFuzzNG seems to be better than TransFuzzNC .
The reason is that TransFuzzNC has no AST correction step.
A large number of mutated JS programs are rejected by the
JS transpilers due to syntax errors.

Conclusion. The experimental results show that TransFuzz
outperforms TransFuzzNG and TransFuzzNC , which indicates
that the proposed grammar-guided AST mutation and AST
correction techniques can improve the efficiency to detect JS
transpiler bugs.

D. Answer to RQ4: The Impact of the Parameter

Our grammar-guided mutation is conducted iteratively, that
is, the AST of a JS program is mutated by TransFuzz several
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Fig. 13: Impact of different loops of complete mutation.

times iteratively until it reaches a certain threshold p (as
explained in Section III-B2). Through multiple iterations,
we increase the complexity of the mutated AST, thereby
increasing the ability of TransFuzz to find JS transpiler bugs.
To access the impact of the parameter p, we use TransFuzz
to test JS transpilers by setting p as 1 to 5. Other settings are
the same as those of RQ2.

Fig. 13 shows the relationship between the number of itera-
tions p and the number of detected bugs. The results show that
a small number of iterations can increase the number of bugs
found by TransFuzz. However, too many iterations can reduce
the bug-finding capability. TransFuzz has the best performance
when the number of iterations is 2. Although iterative mutation
is beneficial to improve the ability of TransFuzz to find bugs,
too many iterations also increase the errors in the mutated
AST. As a result, the AST correction step in Section III-C
may have difficulty in getting the correct AST for testing.
When the number of iterations is 2, the complexity and the
success rate of mutated ASTs could have the best balance.

Conclusion. Experimental results demonstrate that the it-
eration number to mutate AST can affect the efficiency of
TransFuzz. When the iteration number is 2, TransFuzz can
obtain better results.

V. THREATS TO VALIDITY

The first threat is that JS programs generated by TransFuzz
may contain indeterminate behavior, though we take steps in
Section III-D to mitigate these situations. However, indetermi-
nate behaviors of JS are diverse, such as code snippets that can
print stack information at runtime. In this case, since the code
uses a different memory address each time it runs, the stack
information will change each run. For such JS programs, we
can only manually analyze whether they are valid JS programs
that trigger JS transpiler bugs.

Secondly, JS transpilers have become a rich tool set after
years of development. For example, babel includes functions
such as translation, parsing, and compression. Although the
transpiler we tested is a core function of the JS transpiler, it
is still not enough to say that the transpiler is fully tested.
In addition to the traditional ES syntax translation, the JS
transpiler also provides JSX, React, Flow, and TypeScript for
universal JS program translation [11], [28]–[30]. Since most
of these features are still in development, we take the testing
of these features as future work.

VI. RELATED WORK

Our work is closely related to the work on JS engine testing.
The early work of JS engine testing focused on testing the

interpreter of the JS engine. They mainly found bugs related to
syntax analysis and shallow semantic analysis. For example,
the open source project Dharma [31] used code generation
and grammar-based mutation techniques to find bugs in the JS
engine parser. Holler et al. [15] used the well-known language
parser ANTLR4 to guide the mutation to fuzz the interpreter.

Wang et al. [32] used the knowledge in a large number
of existing JS program samples to generate evenly distributed
seed JS programs for fuzzing.

With the continuous popularity of the JS language, re-
searches on JS engine testing have further developed. The
testing of the JS engine has gradually developed from the
parser testing to the discovery of deeper memory defects,
JIT testing, etc. Li et al. [33] proposed a cost-effective
dynamic update algorithm based on AFL. Their approach
could generate more efficient JS seed programs. Wang et
al. [34] introduced a syntax-aware adjustment strategy to
improve the code coverage of AFL. Han et al. [19] noticed
the dynamic characteristics of JS programs. They proposed a
JS program generation algorithm of semantic aware assembly.
Aschermann et al. [35] used syntax code coverage as feedback
to guide JS engine testing, which performance was even
one order of magnitude better than AFL. Lima et al. [18]
noticed the incompleteness of ES standards caused by the
rapid development of JS. They used test transplantation and
differential testing to find functional errors in JS engines. Park
et al. [16] found that existing techniques do not fully utilize
the JS program corpus. They preserved the subtle semantics
encoded in the corpus during the seed mutation process, thus
touching deeper bugs in JS engines. Park et al. [36] also
proposed an N + 1 version differential testing approach, which
found bugs in JS engines. Dinh et al. [37] focused on testing
the programming interface of JS runtime systems with JS
program generation techniques.

With the development of artificial intelligence, Lee et
al. [20] took the ASTs of JS programs as inputs. They gener-
ated effective JS programs by using the short-term memory
model (LSTM). Ye et al. [17] used the latest pre-trained
model GPT-2 to further improve the syntax accuracy of the
generated JS programs. Tolksdorf et al. [22] found bugs in the
JS engine debugger through the method of differential testing
with machine learning.

Our work is different from JS engine testing. These ap-
proaches may not be applied for testing JS transpilers. The
main reason is that JS transpilers focus on the conversion
of specific ES syntax, while JS programs generated by the
JS engine testing are extensive and comprehensive. Such JS
programs do not focus on the generation or mutation of JS
programs with specific ES syntax. According to the evaluation
in RQ2, TransFuzz outperforms several state-of-the-art JS
engine testing approaches.



VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed TransFuzz, an automated test-
ing framework based on grammar-guided mutation, for JS
transpiler testing. TransFuzz generates JS programs with spe-
cific syntax through grammar-guided mutation and collects
different kinds of bugs according to the characteristics of JS
transpilers. Evaluations show that TransFuzz is effective at
finding bugs in real-world tools. We have reported 73 bugs
on two real-world JS transpilers, of which 58 bugs have been
confirmed by developers as unique bugs. Besides, TransFuzz
significantly outperforms existing state-of-the-art approaches
by detecting 47.82% to 385.71% more bugs on average. For
future work, we consider extending JS transpiler testing to JS
completeness testing, including testing for tools like JS tran-
spiler, beautification, compression, and obfuscation. Another
possible direction is to test transpilers for other programming
languages.

ACKNOWLEDGMENT

This work was supported by the National Natural Science
Foundation of China (No. 62032004, 62202079), and the
Fundamental Research Funds for the Central Universities
(No.DUT22RC(3)028).

REFERENCES

[1] Wolfgang Christian, Mario Belloni, Robert M Hanson, Bruce Mason,
and Lyle Barbato. Converting physlets and other java programs to
javascript. The Physics Teacher, 59(4):278–281, 2021.

[2] Yogesh Maheshwari and Y Raghu Reddy. A study on migrating flash
files to html5/javascript. In Proceedings of the 10th Innovations in
Software Engineering Conference, pages 112–116, 2017.
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