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Toward Better Summarizing Bug Reports With
Crowdsourcing Elicited Attributes
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Abstract—Recent years have witnessed the growing demands
for resolving numerous bug reports in software maintenance.
Aiming to reduce the time testers/developers take in perusing
bug reports, the task of bug report summarization has attracted
a lot of research efforts in the literature. However, no systematic
analysis has been conducted on attribute construction, which
heavily impacts the performance of supervised algorithms for bug
report summarization. In this study, we first conduct a survey to
reveal the existing methods for attribute construction in mining
software repositories. Then, we propose a new method named
Crowd-Attribute to infer new effective attributes from the crowd-
generated data in crowdsourcing and develop a new tool named
Crowdsourcing Software Engineering Platform to facilitate this
method. With Crowd-Attribute, we successfully construct 11 new
attributes and propose a new supervised algorithm named Logistic
Regression with Crowdsourced Attributes (LRCA). To evaluate
the effectiveness of LRCA, we build a series of large scale datasets
with 105 177 bug reports. Experiments over both the public dataset
SDS with 36 manually annotated bug reports and new large-scale
datasets demonstrate that LRCA can consistently outperform the
state-of-the-art algorithms for bug report summarization.

Index Terms—Attribute construction, bug report summa-
rization, crowdsourcing, logistic regression, mining software
repositories.

I. INTRODUCTION

A S STATED in [1], more than 45% of software develop-
ment effort has been taken on software maintenance for

fixing software bugs. Many software projects employ bug repos-
itories, e.g., Bugzilla, to manage numerous bug reports [2]–[5].
For example, Bugzilla has been publicly adopted by 134 orga-
nizations and projects, including Mozilla, Eclipse, Gnome, and
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GCC (www.bugzilla.org/installation-list/). With Bugzilla, over
485 000 and 1 236 000 bug reports have been submitted up to
Januray 1, 2017 for Eclipse and Mozilla, respectively. Facing
numerous bug reports, a lot of software automation tasks have
been conducted to facilitate bug fixing [6], including detecting
duplicate bug reports [7], [8], triaging bug reports to developers
[9]–[11], and locating the root causes of bugs [12]–[14]. Dur-
ing these tasks, people need to well wade through the contents
of bug reports. For example, a tester needs to fully understand
historical bug reports to avoid submitting duplicate ones [7].
Meanwhile, when fixing a bug, a developer often needs to trace
through historical bug reports to locate the root cause of this
bug [15] and manually fix the bug with the assistant of bug
fixing tools [16]. An earlier work [17] indicates that 200 bug re-
ports from Mozilla contain 275 references to other bug reports,
showing the extent to which developers refer to other bugs.

However, it is tedious and time-consuming for testers/
developers to wade through the complete contents of bug
reports, since a bug report may contain tens even hundreds of
sentences [18]. A good way to reduce the time testers/developers
take in perusing bug reports is to provide a summary of each
bug report [15]. The Debian community even encourages
reporters to manually set a summary for each bug report [19],
though the considerable human costs may burden this activity.
Hence, automatic bug report summarization is an alternative
way. Although the title of a bug report is already a good
high-level summary [17], [20], the high-level summary is not
enough to understand bug reports. For example, testers may
hardly detect the duplicate pair of Eclipse bug reports 2143011

and 2143722 by merely reading their titles.
In this study, we summarize a bug report by selecting a set

of sentences from its description and comments to conclude the
main idea of this report. In the literature, a lot of approaches
have been proposed to automatically summarize bug reports.
The existing approaches can be classified into two categories,
namely supervised [15], [21] and unsupervised ones [17], [18].
Given a bug report, both categories evaluate all the sentences in
this bug report and select some of them to form its summary.

In a supervised approach, a set of attributes3 characterizing
the sentences in bug reports are constructed and evaluated to

1Bug 214301-Could not load tasklist hyperlink detector extension. https://
bugs.eclipse.org/bugs/show_bug.cgi?id=214301

2Bug 214372-Exception during editing xsd files. https://bugs.eclipse.
org/bugs/show_bug.cgi?id=214372

3In the societies of data mining and machine learning, attributes are also
known as features.
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train a statistical model over a training set (annotated bug re-
ports in this task). Given a new bug report, the attributes of
its sentences are calculated and fed into the trained model to
produce its summary. In the seminal work [15], Rastkar et al.
first issue the task of bug report summarization and propose a
supervised approach named bug report classifier (BRC). They
directly transfer 24 attributes from generic conversation-based
summarization to bug report summarization and train the model
of logistic regression to predict the summary sentences, i.e., the
sentences in the bug report summary [22].

In contrast, an unsupervised approach usually assigns a mea-
sure value to each sentence in a bug report and selects the top
ranked sentences to form the summary. Mani et al. [18] apply
four unsupervised algorithms to this task, namely Centroid [23],
Maximum Marginal Relevance (MMR) [24], Grasshopper [25],
and Diverse Rank (DivRank) [26]. Lotufo et al. [17] propose an
unsupervised approach by analyzing how developers scan a bug
report.

In this study, we focus on the supervised approaches for bug
report summarization and investigate new methods to construct
effective attributes to facilitate this task. In mining software
repositories (MSR), attributes, namely the data representation
ways with discriminative information from data, heavily im-
pact the effectiveness of supervised approaches, since different
attributes can “entangle and hide more or less the different ex-
planatory factors of variation behind the data” [27]. However, to
the best of our knowledge, no analysis has been systematically
performed to investigate the methods behind constructing new
attributes for bug report summarization (also for other tasks in
MSR). To achieve more insights into this topic, several issues
are to be investigated. In addition to knowledge transfer em-
ployed in [15], what are the other methods adopted in MSR for
constructing attributes? Can we have better methods to construct
effective attributes? What is the performance of supervised ap-
proaches with such new attributes against existing ones?

In this study, we first conduct a survey on the authors of 40
papers in MSR to reveal the existing methods for construct-
ing attributes, including knowledge transfer, mining data, and
heuristic or experience (see Section III for more details). Mean-
while, this survey indicates that mostly 1–3 persons are involved
in the process of constructing attributes, which may bring some
potential drawbacks. On the one hand, knowledge transfer is
inapplicable unless researchers identify similar domains with
effective attributes. On the other hand, it is hard for the other
two methods to achieve enough effective attributes when a lim-
ited number of researchers are involved.

Second, we propose a new method named Crowd-Attribute
(CA) to systematically infer attributes for bug report sum-
marization from the crowd-generated data in crowdsourcing.
Although crowdsourcing has been exploited in many software
engineering (SE) tasks [28], [29], as to the best of our knowl-
edge, CA is the first attempt toward employing crowdsourcing
to generate data for attribute inference. CA holds a series
of characteristics. On the one hand, CA involves a group of
volunteers to inspire researchers so it is hopeful to achieve
more effective attributes. On the other hand, new attributes
by this method are able to achieve promising performance in

summarizing bug reports. More specifically, CA chooses a part
of bug reports and employs a group of volunteers to manually
extract summary sentences. During the process, the volunteers
are requested to report the reasons in making their decisions.
Inspired by these reasons, we construct new attributes under the
guidance of a set of heuristic construction rules. In this study,
we develop a tool named Crowdsourcing Software Engineering
Platform (CSEP) to facilitate this process.

Third, we successfully construct 11 new attributes by apply-
ing the new method CA and propose a new approach named
Logistic Regression with Crowdsourced Attributes (LRCA) to
achieve more accurate summaries of bug reports. In LRCA, the
11 attributes are evaluated to train a statistical model, namely
logistic regression, over the training set. For a new bug report,
the attributes of each sentence are calculated and fed into the
trained model to predict its summary.

Finally, we conduct extensive experiments to evaluate the ef-
fectiveness of LRCA with a series of datasets. In addition to
the only publicly available dataset SDS (the bug report Summa-
rization DataSet) [15] with 36 annotated bug reports, we also
build a series of large datasets named Bug Report Summariza-
tion Benchmarks (BRSBs) with 105 177 bug reports from four
well-known open source projects. Over the manually annotated
dataset SDS, LRCA improves the supervised approach BRC
by 1.33%, 10.11%, 8.94%, and 5.89% in terms of Precision,
Recall, F-score, and Pyramid, respectively. Meanwhile, LRCA
consistently improves the unsupervised approaches by 0.93%–
18.77% over these metrics. For BRSBs, LRCA improves BRC
by 22.44%–34.72%. In contrast, LRCA can also improve the
unsupervised approaches by 1.88%–29.4%.

This paper is structured as follows. In Section II, we present
the background and the motivation of this study. In Section III,
we investigate the existing methods for constructing attributes
in the literature by a survey. In Section IV, we illustrate the
roadmap of CA and the new tool CSEP. Then, we apply CA
to bug report summarization in Section V. Experimental results
are illustrated in Section VI. We conduct a discussion on CA
and experimental results in Section VII. The threats to validity
are presented in Section VIII. We review the related work in
Section IX. Finally, Section X concludes this paper.

II. BACKGROUND AND MOTIVATION

In this section, we first present the background of bug report
summarization, and then clarify related conceptions of attributes
in supervised approaches to justify the motivation of this study.

A. Bug Report and Bug Report Summarization

Fig. 1 exhibits a bug report of Eclipse, namely Bug 214066.4

As shown in Fig. 1, a developer named Steffen Pingel submits a
bug report entitled “improve switching between task list presen-
tations.” Steffen Pingel presents the detailed description of this
bug that “It is not possible ... mode).” In addition, Steffen Pin-
gel also specifies some related items of this bug, e.g., Product,

4https://bugs.eclipse.org/bugs/show_bug.cgi?id=214066, last checked
July 1, 2017

https://bugs.eclipse.org/bugs/show_bug.cgi?id=214066
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Fig. 1. Bug 214066: An example of bug report. A bug report usually consists
of a title, some specified items, a description, and some comments.

Component, etc. After Steffen Pingel initializes Bug 214066,
five participators comment on this bug.

Given a bug report as Bug 214066, the goal of bug report
summarization is to extract a part of sentences from its descrip-
tion and comments to form the summary which can present
the essence of this bug report. Up to now, both a supervised
approach [15] and several unsupervised approaches [17], [18]
have been proposed to resolve this task. To date, SDS is the
only widely-used and publicly available dataset for this task
[15]. In [15], Rastkar et al. collect 36 bug reports with more
than 2000 sentences from four open source software projects
and recruit ten graduate students (annotators) to select the sen-
tences to form the gold standard summary. The annotated 36
bug reports (SDS) are then used as a benchmark in the task of
bug report summarization.

In the communities of MSR, one similar task with bug report
summarization is bug report enrichment [30], which enriches the
description of a bug report with related information from other
bug reports. However, the two tasks are different from both the
target and usage scenario. For the target, bug report enrichment
aims at adding details (e.g., stack traces) to a newly submitted
bug report to help developers/triagers fully comprehend it. In
contrast, bug report summarization aims at summarizing his-
torical bug reports to help developers/testers quickly get the
knowledge in them. For the usage scenario, bug report enrich-
ment enriches the description of a bug report, since most newly
submitted bug reports are written in less than 100 words [30].

Fig. 2. General process of supervised approaches in MSR.

While bug report summarization summarizes the description
and comments of bug reports, when there are too many com-
ments for developers/testers to read in limited time. Hence, bug
report summarization is essential to accelerate the daily work of
developers/testers.

B. Attributes in Supervised Approaches

In a supervised approach, attributes are to be constructed and
evaluated to train a statistical model. In this section, we first
review the general workflow of supervised approaches in MSR
and then clarify some conceptions related to attributes.

As shown in Fig. 2, the process of supervised approaches in
MSR consists of five steps. First, the raw SE data are collected
with respect to the task under solving. In the task of bug report
summarization, bug reports are collected as the raw SE data
[15], [17], [18]. Second, some preprocessing activities (e.g., to-
kenization, stemming, and stop word removal) can be conducted
to clean and format the raw data. Third, a set of attributes are
constructed with discriminative information extracted from the
preprocessed data. In this step, some related activities, namely
attribute selection and attribute extraction, can be optionally
conducted to further improve the attributes. Fourth, the values
of attributes are evaluated to train a statistical model, e.g., logis-
tic regression, decision tree, etc. Finally, the mining results are
applied to solve SE tasks.

The activities related to attributes, e.g., attribute construction,
attribute selection, and attribute extraction5 are vaguely referred
to as attribute engineering. For clarity, we present the definitions
of these conceptions as follows [31]–[33].

Attribute construction is the process of determining which
discriminative information from data should be used to form a
set of attributes. These attributes are to be evaluated and fed into
statistical models.

Attribute selection is the process of removing redundant and
irrelevant attributes from the existing attributes, and selecting
relevant attributes. Here, redundant attributes refer to those at-
tributes providing no more information than the selected at-
tributes. In contrast, irrelevant attributes provide no useful in-
formation of data.

5In the communities of data mining and machine learning, attribute selec-
tion and attribute extraction are also known as feature selection and feature
extraction.
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Attribute extraction is the process of creating new attributes
from the functions of the existing attributes, so as to transform
the high-dimensional data to a low-dimensional space.

As to these conceptions, attribute selection and attribute ex-
traction could be viewed as the postprocessing steps after at-
tribute construction. In MSR, some efforts have been spent on
attribute selection and attribute extraction [34]–[37]. In contrast,
no research work has been conducted to investigate the meth-
ods of attribute construction. Many researchers present new
attributes for solving SE tasks without explaining the methods
behind constructing these attributes [7], [8]. For example, Sun
et al. propose 54 attributes in the task of duplicate bug report
detection [8], but they have not explained why they use sum-
mary and description only to construct attributes for bug reports,
rather than other items, e.g., product.

In summary, it still remains a challenge for researchers to
construct attributes in MSR when tackling a new SE task.

III. SURVEY OF ATTRIBUTE CONSTRUCTION

Although attributes greatly impact the performance of a su-
pervised approach, no systematical analysis has been conducted
in the literature for bug report summarization (and other tasks
in MSR). In this section, we conduct a survey to achieve an
overview understanding on the current status of attribute con-
struction. In this survey, we seek the research papers related
to constructing new attributes in MSR and inquire the authors
about the methods they follow in attribute construction and the
number of persons involved in this process.

More specifically, we first manually check 166 research pa-
pers published in 2012, 2013, and 2014 on the Working Con-
ference on Mining Software Repositories,6 a main international
conference focusing on MSR. We find that nearly a quarter
of these papers (40 papers) are related to constructing new at-
tributes to automate SE tasks. Then, we send an email to the
authors of each attribute-related paper with a survey including
two questions (see Fig. 3). In this study, we survey the MSR
conference since authors from this conference mostly focus on
MSR with newly constructed attributes. An interesting finding
is that according to the computer science bibliography DBLP,7

at least one author from 27 out of the 40 surveyed papers has
experience in publishing papers from other premier conferences
or journals, e.g., ICSE, TSE. Hence, our survey can reveal the
methodology on attribute construction not limited to the MSR
conference.

Since none of the authors of the 40 papers explicitly presents
her/his method of attribute construction, we infer three possible
methods, namely knowledge transfer, mining data, and heuristic
or experience, from these papers and list them as the first three
options in Q1. In addition, we list crowdsourcing as the fourth
method to investigate its application status. In case that the
authors may have other methods, we also provide the option E:
Others for the authors to provide their unique methods. In Q2,
we analyze the average number of persons involved in attribute

6http://www.msrconf.org/ last checked July 1, 2017
7Computer science bibliography DBLP. http://dblp.org/

Fig. 3. Questions in the survey.

TABLE I
RESULTS OF THE SURVEY

construction for an SE task. Such questions aid us in having
an intuitive understanding on the methods when researchers
construct attributes for a practical SE task.

We receive 20 responses, which mean that the response rate is
50%. Even though MSR is a specific research area which limits
the number of authors we investigate, the survey still helps
us achieve some interesting findings. We present the results
of our survey in Table I. We list the selected options of Q1
and Q2 in black. The total number of each selected options
is counted in the last row. Since some authors also provide
a few comments for their selections, we give some examples
of these comments in the last column of Table I. For Q1, we
find that these authors pay nearly equal attention to the first
three methods and some authors may combine several methods
together to construct attributes for an SE task. As to the survey,
no author employs crowdsourcing for attribute construction yet.
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Fig. 4. Roadmaps of crowdsourcing and CA.

For Q2, the work of attribute construction usually involves a
small set of persons, namely 1–3 persons.

Meanwhile these responses also reveal some difficulties of
attribute construction in MSR. First, no universal method exists
in attribute construction. Sometimes the authors construct new
attributes either by an accidental finding in the experiment or
an unclear method [see Comments (1) and (4)]. Second, the
authors tend to try out various attributes in a task, while mostly
only 1–3 persons are involved in this process, which may limit
the attributes that the authors could construct [see Comments
(2), (3), and (5)].

Based on the aforementioned findings, we propose CA to
construct attributes for SE tasks by involving more volunteers.

IV. CROWD-ATTRIBUTE AND CROWDSOURCING SE PLATFORM

In this section, we first present the roadmap of CA, then
briefly introduce our new tool CSEP to facilitate CA.8

A. Roadmap of Crowd-Attribute

Since being proposed in 2005, crowdsourcing has been em-
ployed to solve a wide range of tasks [38]. As to [39], a general
process of crowdsourcing consists of eight steps [see Fig. 4(a)].
When a requester has a task for solving, she/he broadcasts it
online and calls for some online volunteers to propose their so-
lutions. The volunteers submit their solutions and vet others’
solutions. After the vetting step, the volunteers with the most
votes may win out and be rewarded by the requester. Then, the
requester exploits the final solution to solve the task. Recently,
a lot of research works [29], [40], [41] have employed crowd-

8Supplemental materials on suggestions of CA and source code of CSEP are
available at http://oscar-lab.org/people/%7excli/open/crowdsourcing/

sourcing to facilitate SE tasks. However, no related work has
been performed on constructing attributes.

Following the general steps of crowdsourcing, we take the
SE task of bug report summarization as an example to explain
the roadmap of CA [see Fig. 4(b)]. In CA, a requester first de-
termines the task for solving, i.e., constructing new attributes
for bug report summarization. Second, the requester broadcasts
the crowdsourcing task online, namely designing a set of task-
related questions for the volunteers and choosing a platform to
deploy these questions. In this example, the requester asks the
volunteers for the reasons on how they determine the summary
sentences in a bug report. The requester broadcasts the ques-
tions on CSEP. Third, the volunteers are recruited to answer
the questions. In such a way, a solution in our study refers to
the answers proposed by a volunteer to the questions. Fourth,
every volunteer submits her/his solution, i.e., her/his answers
to the questions. Since we need to construct attributes from the
solutions, all the solutions are collected and examined without
a vetting process. After examining the solutions, the volunteers
providing high quality solutions are rewarded with a gift, e.g., a
USB flash disk in this study. Finally, the requester profits by con-
structing new attributes under the inspiration of the solutions,
e.g., the reasons to select summary sentences.

In this study, we design heuristic construction rules (HCRs)
in Fig. 5 to guide the action of attribute construction from vol-
unteers’ reasons. HCRs consist of three phases.

In HCR1, some candidate attributes are extracted from ev-
ery reason. Specifically, we analyze the part-of-speech and the
structure of each reason. The subject and object of the reasons
are identified. Since attributes are usually expressed as nouns
or adjectives, e.g., “the length of the sentence” or “the sentence
is long,” we check whether the subject or object of each reason
is a noun/adjective term or adjective+noun phrase. If it is true,
we take the term or phrase as a candidate attribute. HCR1 limits
requesters to select only one candidate attribute from each rea-
son. Hence, requesters select the candidate attribute according
to the frequency of terms/phrases counted by all the reasons.
If no candidate attribute is identified, e.g., it is not a complete
sentence, we remove the reason. We make the candidate at-
tribute and its corresponding reason as a candidate pair, i.e.,
<candidate attribute, reason>. In this phase, a set of candidate
pairs are collected.

In HCR2, some meaningless candidate attributes are detected
and removed. First, we group the candidate pairs according to
the synonyms and morphology of candidate attributes. Thus,
pairs of “<the length, . . . >” and “<lengths, . . . >” are put
in the same group. Second, for each group, we analyze the
meaning of the candidate attributes. We reserve a group, if the
candidate attributes in the group appear in some predefined
items of SE data, e.g., the items Product and Priority in a bug
report, since these items are more discriminative than free text
(e.g., comments in a bug report). We also reserve candidate
attributes that can be transformed into some measurements,
e.g., “length of text,” “frequency of terms,” and “similarity”
(similar), which are widely used in the literature. Otherwise,
a group of candidate attributes is removed. At the end of this
phase, we select one of the candidate attributes in each reserved
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Fig. 5. Heuristic construction rules.

group as a representative, since all the candidate attributes in
the same group are synonyms of the same meaning.

Finally, HCR3 calculates the values of the representative can-
didate attributes and merges candidate attributes with the same
calculation metrics to achieve the final attributes. In the calcula-
tion step, all candidate attributes in the same group are calculated
by the same criterion:

C1. For candidate attributes that are the same with the at-
tributes in the related work, the same methods are fol-
lowed to calculate the attributes.

C2. If the candidate attribute is a predefined item or a key-
word of SE data, we enumerate the status of the item or
keyword as attribute values, e.g., using 0 and 1 to denote
whether a sentence related to an item, and using 0, 1, 2
to denote the bug report Priority P1, P2, and P3.

C3. For attributes related to some measurements, the math-
ematic definitions of the measurements can be followed
to calculate the corresponding information in SE data,
e.g., calculating the length or similarity of sentences.

C4. For the remaining attributes, we try to transform them
into some measurements, e.g., transforming a candidate
attribute into a type of length or similarity.

Fig. 6. Roles and functions of CSEP.

If no criterion is satisfied, the candidate attribute is deleted.
In the merging step, we merge two candidate attributes when

they use the same metrics for calculation. Two calculation met-
rics are the same, if the inputs of the calculation metrics are the
same and they output the same values for all the inputs. For ex-
ample, “<the length, . . . >” and “<long, . . . >” can be merged,
if requesters calculate both candidate attributes by the number
of characters in a sentence. After merging, the final attributes
are achieved.

With these heuristic rules, the attributes could be constructed
step by step. We shall demonstrate the application of HCRs to
bug report summarization in Section V.

As to its roadmap, CA is far different from two existing meth-
ods, namely knowledge transfer and heuristic or experience. In
contrast, CA is somehow similar as the method of mining data,
since both methods investigate SE data to construct new at-
tributes. The key difference between CA and mining data is that
CA is more likely to construct more effective attributes than
mining data, because in the process of attribute construction,
a requester (researcher) in CA is inspired by many volunteers
rather than by herself/himself only in the method of mining data.

B. Crowdsourcing SE Platform

To facilitate the process of CA, we implement a new
crowdsourcing-based tool CSEP. CSEP is implemented in J2EE
using MySQL Server 5.5, compiled with MyEclipse 8.5, and
deployed with Tomcat 6.0.

As shown in Fig. 6, there are two roles (volunteer and re-
quester) in CSEP. A volunteer can browse existing tasks, join
tasks, and submit solutions. A requester can post, modify, and
delete tasks. In addition, a requester can examine the solutions
by volunteers to construct new attributes for SE tasks. In CSEP,
a crowdsourcing task usually consists of several subtasks and
each subtask is associated with a group of questions predefined
by a requester. In such a way, a volunteer’s solution is composed
of all her/his answers to the questions.

After a volunteer logins into CSEP, she/he can find a list
of existing tasks under solving [see Fig. 7(a)]. If the volunteer
joins any task, CSEP will explain the related conceptions of the
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Fig. 7. CSEP screenshots. (a) Volunteer browses tasks. (b) Volunteer submits solutions. (c) Requester constructs attributes.

task for the volunteers. After a volunteer joins a task, she/he
can submit her/his solution. For example, in the task of bug
report summarization, a volunteer is assigned several subtasks.
In each subtask, the volunteer is presented a bug report with
several questions [see Fig. 7(b)], including which sentences are
selected as the summary and why she/he makes this decision.
The volunteer submits the answers to the questions as her/his
solution. In CSEP, all the bug reports can be selected in random
or a predefined order. Meanwhile, CSEP can decide the initial
maximum times to present a bug report by counting the pre-
sented times of each bug report. If the presented times of all the
bug reports reach this initial setting, CSEP resets the counter to
continue selecting bug reports. CSEP records every operation of
the volunteers to ensure that no volunteer will receive the same
bug report twice.

After submitting all the solutions, a requester can directly
browse the solutions and construct attributes by the interface
of CSEP in Fig. 7(c). In this platform, the “AnswerComment”
and “AnswerAttribute” columns are editable. The “AnswerCom-
ment” column is designed for requesters to record the candidate
attributes of a sentence, the candidate attribute group IDs, their
understanding of the sentence, the possible calculation metrics
for attributes, the abbreviation of attributes, etc. The contents
of “AnswerComment” are changed by requesters at different
phases of HCRs. The “AnswerAttribute” column is only used to
record the final attributes.

V. NEW ATTRIBUTES AND LRCA FOR BUG

REPORT SUMMARIZATION

In this section, we present how to achieve new attributes by
applying CA to bug report summarization and introduce the new
supervised approach LRCA.

A. Applying CA to Bug Report Summarization

This section applies CA to bug report summarization.
1) Requester has a Task: In this study, we aim to construct

effective attributes for bug report summarization. We download
the “fixed” bug reports till December 31st, 2015 from bug

Fig. 8. Questions for bug report summarization.

repositories of Mozilla, Eclipse, KDE, and Gnome as the
dataset for further processing.

2) Design and Deploy Questions: The crowdsourcing task
is composed of several subtasks. For each subtask, a bug report
and two questions are to be specified before they are deployed.
In this step, we first prepare a set of crowdsourcing bug reports.
Since the volunteers may lack experience in bug report summa-
rization, we define two criteria for preparing the crowdsourcing
bug reports as follows.

Criterion 1: We prefer bug reports without long stack traces.
Criterion 2: We prefer bug reports with fewer technical ab-

breviations and chunks of code.
These criteria are similar as in [15]. With the aforementioned

criteria, we iteratively choose the crowdsourcing bug reports
from the downloaded dataset. More specifically, we randomly
check ten bug reports from the dataset each time. Out of these
bug reports, one best satisfying the earlier mentioned criteria is
kept as the crowdsourcing bug reports. We iterate this process
until we collect enough crowdsourcing bug reports. In this case
study, we prepare 30 crowdsourcing bug reports.

Second, we design two questions (Q3 and Q4 in Fig. 8) for
each subtask. We check in Q3 whether the volunteers could
well understand the bug reports. In Q4, we ask the volunteers to
select sentences as the summary and write their reasons.

Finally, we deploy the crowdsourcing bug reports and related
questions on CSEP. Initially, the initial maximum time to
present a bug report is set to two. This setting guarantees
that each crowdsourcing bug report can be viewed by at least
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TABLE II
EXAMPLES OF VOLUNTEER’S REASONS AND CONSTRUCTED ATTRIBUTES

two volunteers based on the recruited volunteers number as
mentioned in the next step. Every volunteer is requested to
investigate three randomly chosen bug reports in two weeks.

3) Recruit Volunteers: We send an email to 450 students in
the School of Software, Dalian University of Technology. In this
email, we invite them to participate in this crowdsourcing task
with a reward of a USB flash disk worth $4. This task success-
fully attracts 21 volunteers, i.e., the participation rate is 4.67%.
In some crowdsourcing platforms such as Mechanical Turk,
the requesters sometimes utilize a qualification test to evaluate
the background of volunteers [42], [43]. In this study, since
all the volunteers have English and computer science back-
ground, no qualification test is employed.

4) Volunteers Submit Solutions: The 21 volunteers login into
CSEP and submit their solutions. On an average, each volunteer
spends 25.9 min on this task.

5) Requester Collects Answers: With CSEP, we successfully
collect 21 solutions. Since a bug report contains a few sentences,
we collect 332 reasons for Q4 in total.

6) Volunteers Get Rewards: We award the volunteers who
provide rational solutions. Out of the 21 volunteers, 19 volun-
teers are awarded a USB flash disk, since two volunteers provide
no reasons for Q4.

7) Requester Profits: In this step, we achieve new attributes
by conducting two actions sequentially, namely answer filtering
and attribute construction.

In the action of answer filtering, we compare the answers to
Q4 of each volunteer. If a sentence is viewed by more than one
volunteer and all the volunteers fill reasons with the consistent
summary sentence decision, we reserve the answers related to
this sentence. Out of the 332 answers for Q4, 200 answers are
finally reserved, i.e., the reserved rate is 60.24%. The reserved
rate is reasonable compared with some similar human annotating
processes [15].

In the action of attribute construction, new attributes are con-
structed under the inspiration of these 200 reasons with HCRs.
In Table II, we present some examples of the volunteers’ rea-
sons and related new attributes. The first two columns are the
summary sentences selected by the volunteers and their reasons.
The remaining columns present some requester’s comments and
newly constructed attributes. Table III presents the basic in-
formation for the attribute construction process, including the
number of candidate attribute pairs in HCR1, the number of

TABLE III
BASIC INFORMATION FOR ATTRIBUTE CONSTRUCTION

groups and reserved groups in HCR2, and the number of groups
applying HCR3-C1 to HCR3-C4. In this study, the second and
third authors act as the requesters (denoted as Req1 and Req2)
to construct attributes independently.

First, we apply HCR1 to extract some candidate attributes
from the reasons. The two requesters find 197 and 190 candidate
attribute pairs from the reasons. For example, they extract “long”
as a candidate attribute from R1 in Table II, since it is an adjective
term and frequently appears in other reasons (for brevity, some
other reasons are not shown). Similarly, in Table II, “a rich
content” is the only phrase in R2. The adjective term “similar” is
the object of sentence R4. The noun term “reporter” is the subject
of sentences R3 and R5. We label these candidate attributes in
bold in Table II.

Second, we apply HCR2 to remove some meaningless groups
of candidate attributes. In this process, the two requesters clas-
sify these pairs into 45 and 37 groups according to the synonyms
and morphology of candidate attributes, e.g., <reporter, R3>
and <reporter, R5> are put in the same group. Then, Req1 re-
moves three meaningless groups. In contrast, all the groups are
reserved by Req2. For the examples in Table II, the candidate
attribute “reporter” is a predefined item of bug reports. Terms
“long” and “similar” are some measurements of bug reports.
Meanwhile, “rich content” is transformed into some measure-
ments related to “long” by Req1.

Finally, we apply HCR3 to achieve final attributes by calcu-
lating and merging similar groups of candidate attributes.

In the calculation step, requesters may follow different
criteria to calculate candidate attributes. For example, Req1
finds that 16 groups of candidate attributes already exist in
previous studies for bug report summarization and follows
HCR3-C1 for calculation. In contrast, the number of groups
applied HCR3-C1 is 14 for Req2. According to Table III, we
find that many groups of candidate attributes can be easily
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TABLE IV
NEW ATTRIBUTES FOR BUG REPORT SUMMARIZATION

calculated by following previous studies (HCR3-C1) or using
enumeration metrics (HCR3-C2). For the candidate attributes
“long” and “rich content,” requesters follow previous studies
[15] to calculate the number of characters in the sentences. The
candidate attribute “reporter” is a bug report item which can be
represented as 0 or 1 for different sentences by HCR3-C2. For
the candidate attribute “similar,” both requesters employ vector
space model (VSM) [44] for calculation.

In the merging step, requesters merge similar groups of can-
didate attributes. For example, the groups related to “long” and
“rich content” are merged, which evaluates the length of a sen-
tence. Eventually, according to reasons R1-R5 in Table II, we
construct three attributes, namely SLEN, REP, and SWD.

Out of the 200 reasons, the two authors can construct the same
attributes from 153 reasons. The concordance rate is 76.5%.
The two authors conduct a pair-wise discussion to resolve their
conflicts. At last, 11 attributes are successfully constructed for
bug report summarization.

In this process, we also achieve an interesting finding that two
volunteers may choose the same summary sentence with distinct
reasons. For example, one volunteer selects the sentence S3 in
Table II under the consideration that “R5: Reporter provides
some suggestions,” while another volunteer selects it due to
the reason that “R4: It is similar with the sentences in the bug
report.” It confirms that involving more volunteers could provide
more ideas from distinct aspects.

B. New Attributes and LRCA

In this section, we first explain these new attributes achieved
by CA. Then, we outline the new supervised algorithm LRCA
for summarizing bug reports.

Table IV provides a short description of the 11 attributes.
Since some attributes in the table rely on the similarity, to
generalize the study and reduce the influence of requesters’
background knowledge, we only employ VSM [44], a widely
used model in information retrieval, to evaluate the similar-
ity between two text units (e.g., sentences, comments, descrip-
tions). In VSM, every text unit is represented as a vector, where
each dimension corresponds to the term frequency-inverse doc-
ument frequency (TF-IDF) value of a term in this text unit. In

information retrieval, the TF-IDF value can reflect the impor-
tance of a term to a text unit in a corpus [45]. In this study, for
each term t in a text unit d, the TF-IDF value calculates the term
weight as follows:

TF−IDFt,d = ft,d ∗ log
N

nt
(1)

where ft,d denotes the number of times that t occurs in d, nt

denotes the number of text units containing t, and N denotes
the number of text units in the corpus (e.g., SDS). Given two
text units with their vectors of TF-IDF values, VSM evaluates
the similarity between the text units by calculating the cosine of
the angle between the vectors.

Given a sentence s in a bug report T , we detail the 11 attributes
as follows.

1) SWT measures the similarity between the sentence s and
the bug report T with VSM.
[Reason] Some volunteers select summary sentences by
comparing the sentences with the topic of the entire bug
reports, e.g., “it is related to the topic,” “it contains some
key words related to the topic.” Hence, requesters trans-
form such reasons into the relatedness between a sen-
tence and the bug report topic by HCR3-C4, and then
use VSM to calculate the “relatedness.” However, we
notice that “topic” may have diverse definitions. Previ-
ous studies basically extract keywords in a document
as the topic [46] or transform all the words into low-
dimensional vectors to represent the topic [47], e.g.,
LDA, PLSA. Since words are the basic elements for
these methods, in this study, requesters utilize words in
the entire bug reports to represent the bug report topic
to minimize the influence of sophisticated measurement
methods.

2) SWD measures the similarity between the sentence s
and the description in the bug report T with VSM. If s
belongs to the description, its SWD is set to 1.
[Reason] This attribute is elicited by the reasons like “it
is similar with the sentences in the description,” “this
sentence explains the best way of solving the problem,”
etc. For the first sentence, both requesters follow HCR3-
C3 to calculate the similarity between a sentence and the
bug report description. For the second sentence, Req2 re-
gards the object “solving the problem” as the candidate
attribute. He takes the “problem” as the bug report de-
scription, since bug report description usually illustrates
the problem of a bug. Then, he translates the candidate
attribute as a type of similarity to evaluate whether a
sentence is related to the “problem” by HCR3-C4.

3) DUP checks if the sentence s is a duplicate of another
sentence Y located before s. If s is a duplicate of Y , the
DUP of s is set to 1, otherwise 0. Here, s is said to be a
duplicate of Y if the similarity between s and Y is larger
than a predefined threshold. In this study, the threshold
is set to 0.8 after parameter tuning.
[Reason] As to the reasons by volunteers, the sentence
Y is more likely to be chosen as a summary sentence
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rather than the duplicate sentence s. To detect duplicate
sentences, requesters translate “duplication” as a type of
similarity for calculation.

4) SLEN measures the length of the sentence s, normalized
by the maximum length of sentences in the bug report T .
Here, the length of a sentence is defined as the number
of characters in this sentence.
[Reason] SLEN is identified by reasons R1 and R2 in
Table II. As an attribute in the previous study [15], re-
questers utilize HCR3-C1 to calculate this attribute.

5) SI measures the importance of a sentence. For the sen-
tence s, we add up the TF-IDF value of each term in s
to represent its importance. SI returns the importance of
the sentence s normalized by the maximum importance
value in the bug report T .
[Reason] SI is an attribute constructed by HCR3-C4.
This attribute is inspired by the reasons such as “this
sentence contains many special words like createWid-
get and readAndDispatch.” Requesters select the adjec-
tive+noun phrase “special words” as candidate attributes
according to HCR1. To calculate the values of these spe-
cial words, requesters still follow the widely used VSM.
The model naturally calculates the importance of a word
by its TF-IDF value.

6) SLOC measures the location of the sentence s, normal-
ized by the number of sentences in this bug report. If s
is the third sentence of a bug report with ten sentences,
SLOC of s is 0.3.
[Reason] SLOC is an attribute that can be calculated
in the same way as previous studies [15] according to
HCR3-C1.

7) CLEN measures the length of the description/comment
containing the sentence s, normalized by the maximum
length of the description/comments in the bug report
T . Here, the length of a description/comment is defined
as the number of characters contained in this descrip-
tion/comment.
[Reason] CLEN is an attribute constructed by HCR3-C3.
The “length” is calculated in the same way as SLEN.

8) DES indicates whether the sentence s is in the description
of the bug report T . If s is contained in the description,
its DES is set to 1, otherwise 0.
[Reason] This attribute is constructed since some volun-
teers prefer “selecting sentences of bug report descrip-
tion.” In the reasons, “bug report description” is a prede-
fined item of a bug report. Requesters follow HCR3-C2
to calculate its value.

9) CCW indicates whether the sentence s provides a hy-
perlink address or contains a key term “problem.” If the
sentence s provides a hyperlink address, its CCW is set
to 0. On the other hand, if s contains the term “problem,”
its CCW is set to 1. Otherwise, its CCW is set to 0.5.
[Reason] As to the reasons by volunteers, a sentence pro-
viding a hyperlink address is unlikely to be a summary
sentence. On the contrary, a sentence containing the key
term “problem” usually provides either the root cause
or the phenomenon of the related bug. Hence, such a

sentence is likely to be one of the summary sentences.
Requesters utilize HCR3-C2 to enumerate the keywords
as 0, 0.5, 1 after being normalized.

10) CODE indicates whether the sentence s is in a piece of
code snippet. Its CODE is set to 1 if s is in a piece of
code snippet, otherwise 0. In this study, we detect code
snippets with a set of heuristic patterns.

a) It starts with “db2,” “proc,” “public,” “>,” “/*,”
“//.”

b) It contains “<,” “if.*(.*,” “sql,” “{,” “},” “public
static,” and “=.”

c) It ends with “;”.
[Reason] Since volunteers comment some sentences as
“there is nothing but codes,” requesters take source codes
as special keywords in bug reports. According to HCR3-
C2, the attribute is mapped into 0 or 1 by detecting source
codes with heuristic patterns.

11) REP is set to 1, if the sentence s is provided by the
reporter of the bug report T , otherwise 0.
[Reason] REP is identified by the candidate attributes of
R3 and R5 in Table II. Requesters directly follow the
previous study [15] to calculate this attribute according
to HCR3-C1.

With these new attributes, we outline our new supervised
algorithm LRCA for summarizing bug reports. To demonstrate
the effectiveness of the attributes constructed by CA, we follow
the BRC framework to design the LRCA algorithm. There are
two main steps in the BRC framework, namely the training step
and the testing step [15]. In the training step, BRC inputs a set of
labeled bug reports. Each sentence in the bug reports is labeled
as 1 or 0, which means a summary sentence or an ordinary
sentence, respectively. These sentences are used to calculate
the 24 attributes transferred from generic conversation-based
summarization. As a result, each sentence is represented as a
vector of 24 dimensions. BRC inputs these vectors and the
corresponding labels into a logistic regression model [48] to
generate a statistical model for bug report summarization. In the
testing step, BRC transforms the sentences in a new bug report
into similar vectors, and feeds the vectors into the statistical
model to get the probability values that these sentences belong to
the summary sentence set. BRC selects the top ranked sentences
with the highest probability values as the summary sentences of
the bug report.

In contrast to BRC, LRCA transforms the sentences in each
bug report according to the 11 attributes constructed by CA,
and trains and tests the logical regression statical model with
vectors of 11 dimensions. Since BRC and LRCA follow the
same framework to summarize bug reports, if LRCA constantly
outperforms BRC, it means that the attributes from CA are more
effective than the transferred attributes by BRC.

VI. EXPERIMENTS

This section presents the research questions (RQs), the ex-
periment setup, the baseline algorithms, the dataset and metrics,
and the answers to these RQs.
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A. Research Questions

RQ1: Can CA construct meaningful attributes?
This RQ investigates whether CA can construct domain spe-

cific attributes with low correlations.
RQ2: Can LRCA improve the comparative approaches?
In this RQ, we evaluate the effectiveness of attributes by

CA for bug report summarization. We compare LRCA over
the publicly available dataset, namely SDS, against the existing
approaches, including supervised and unsupervised ones.

RQ3: How does the number of volunteers influence the effec-
tiveness of LRCA?

CA in this study involves a number of volunteers. This RQ
evaluates the influence of the number of volunteers. More specif-
ically, we will achieve the attributes contributed by distinct sized
combinations of volunteers in CA and evaluate the performance
of LRCA with these attributes.

RQ4: Can LRCA perform well over large scale datasets for
bug report summarization?

In this RQ, we build a series of large scale datasets for bug
report summarization and evaluate the performance of LRCA
against the existing approaches.

RQ5: Can we employ interested volunteers with the necessary
knowledge to participate in CA?

We investigate in this RQ whether there exist interested vol-
unteers with the sufficient knowledge to participate in CA.

B. Experiment Setup

In the experiments, all the algorithms are implemented in Java
JDK1.8.0_31, and run on PCs running 64-bit Win 7 with Intel
Core(TM) i5-3470 CPU and 8G memory.

For a fair comparison, we adopt the same settings as in the lit-
erature [15], [17] in all the algorithms. Every algorithm ranks the
sentences in a bug report by either their predicted probabilities
[15] or the predefined measure values [17], [18] in descending
order. Then, the top ranked sentences are selected out, one by
one, to form the summary until the number of words in the sum-
mary reaches a predefined threshold, namely 25% of the total
number of words in this bug report.

C. Baseline Algorithms

We detail the baseline algorithms in this section. To have a
clear understanding of the baselines, Table V summarizes the
attributes used in these algorithms as well as a short description
of each attribute. In the last column, we label the attributes in
LRCA that are the same with previous attributes.

1) Bug Report Classifier: BRC [15] is a supervised algo-
rithm to summarize bug reports with 24 conversation-based
attributes (Attributes #1–#24). The first six attributes refer to
Sprob and Tprob. Sprob is the probability that a word belongs
to a participator. If word w occurs ten times in a bug report and
participator p uses w for three times, then Sprob of w for p is
0.3. Similarly, Tprob is the probability that a word belongs to
a comment or the description. The first six attributes measure
the max, mean, and sum of Sprob and Tprob of a sentence. At-
tributes #7–#14 measure the position (TLOC, CLOC), length

TABLE V
ATTRIBUTES FOR BASELINE ALGORITHMS

(SLEN, SLEN2), and submitted time (TPOS1, TPOS2, PPAU,
SPAU) of a sentence under different metrics. Attributes #15–#21
analyze the semantic changes between sentences or comments.
Specifically, COS1 and COS2 measure the semantic related-
ness before and after the current comment. CENT1 and CENT2
measure the semantic relatedness between a sentence and the
related comment. PENT, SENT, and THISENT calculate the in-
formativeness (entropy) of different comments. Attributes #22
and #23 are related to the participators. DOM detects the partic-
ipator that writes most words and BEGAUTH detects the first
participator (reporter). At last, CWS detects the unique words
of a sentence.

2) Centroid: Mani et al. [18] augment four unsupervised
algorithms Centroid, MMR, Grasshopper and DivRank with
a preprocessing step for bug report summarization. Centroid
transforms sentences in a bug report into word-based vectors.
Each entry of a vector is the TF-IDF value of a word. The
vector size is the vocabulary of the bug report. Thus, words
are the attributes of Centroid (Attribute #25). Centroid averages
the word-based vectors to form a pseudovector and selects the
summary sentences according to the cosine similarity between
the word-based vector and the pseudovector.

3) Maximum Marginal Relevance: MMR constructs the
same word-based vectors and pseudovector as Centroid. Based
on these word-based attributes (Attribute #25), a summary sen-
tence is selected if it is similar with the pseudovector and dis-
similar with the previously selected sentences. Dissimilarity is
calculated as the negative of cosine similarity.

4) Graph Random-Walk With Absorbing StateS That HOPs
Among PEaks for Ranking: Grasshopper constructs a sentence
graph of the new bug reports for summarization. In the graph,
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each vertex is a sentence and each edge is the cosine similarity of
two sentences. Then, a random walk is conducted on the graph.
Grasshopper selects sentences by counting the visited numbers
of these sentences. Since the basic elements of Grasshopper
are the sentence similarity, the attributes of Grasshopper can
be regarded as the similarity between a sentence and every
sentence in the bug report (Attribute #26). The attribute number
is the sentence number.

5) Diverse Rank: DivRank is an improved algorithm of
Grasshopper. It enhances the random walk process by consid-
ering not only the similarity between sentences, but also the
previously visited numbers of the sentences. Hence, it shares
the same attributes with Grasshopper (Attribute #26).

6) Hurried: Lotufo et al. [17] manually mine three attributes
(#27–#29) for unsupervised bug report summarization. Hurried
utilizes PageRank [49] to select a summary sentence with con-
sideration of its similarity with the bug report title, the sentences
in the bug report description (the attribute DES), and the senti-
ment of the sentences.

Besides the supervised algorithm BRC, we compare LRCA
with five unsupervised algorithms, since all these algorithms
target bug report summarization and they also have attribute-
related elements. Obviously, the attribute-related elements in
the unsupervised algorithms are different from the 11 attributes
in LRCA. For Centroid, MMR, Grasshopper, and DivRank,
they only use words or sentences as attributes. In contrast, the
11 attributes elicited by volunteers are quite different and more
explainable. For Hurried, the only overlapped attribute with
LRCA is DES. However, LRCA uses DES based on the fact
that volunteers select summary sentences in consideration of
the description. In addition, we note that there are some over-
lapped attributes between BRC and LRCA, e.g., REP, SLOC
(named as CLOC in BRC), etc. Since both the two algorithms
consider many attributes, we conduct a thorough analysis of
these attributes in Section VII-A.

D. Dataset and Metrics

In RQ2 and RQ3, we compare the performance of algorithms
over the dataset SDS.

To the best of our knowledge, SDS is the only widely-used
public dataset for bug report summarization with 36 annotated
bug reports of 2361 sentences. For each unsupervised approach,
all sentences in a bug report are evaluated and sorted according
to their measure values to form the summary. In contrast, in the
existing supervised approach BRC [15], Rastkar et al. employ
a leave-one-out framework to summarize bug reports. More
specifically, given 36 bug reports in SDS, each bug report is
selected out as the new bug report for summarization and the
remaining bug reports are used as its training set. In this study,
LRCA follows the leave-one-out framework to train models.

In the literature [15], [17], [18], four metrics are employed
to evaluate algorithms, namely Precision, Recall, F-score, and
Pyramid. The four metrics are defined as follows.

Precision = Numsuccess/Numselected (2)

where Numsuccess is the number of selected summary sentences
which belong to the gold standard summary and Numselected is
the number of selected summary sentences by an algorithm.
Precision measures the portion of selected summary sentences
which belong to the gold standard summary

Recall = Numsuccess/Numtotal (3)

where Numtotal is the total number of summary sentences in the
gold standard summary. Recall can be interpreted as the portion
of sentences from the gold standard summary which are selected
by an algorithm

F−score =
2 ∗ Precision ∗ Recall

Precision + Recall
(4)

where F-score indicates an overall performance of an algorithm,
which is a weighted average of Precision and Recall

Pyramid = Numtotal−links/Nummax−links (5)

where Pyramid measures the summarization from the perspec-
tive of annotators. Numtotal−links represents the total number of
times that the sentences in the summary are voted by the an-
notators, while Nummax−links represents the maximum possible
total votes for that summary length.

E. Answer to RQs

1) Answer to RQ1: In this RQ, we investigate whether CA
can construct meaningful attributes. Meaningful attributes mean
that the attributes may carry the domain knowledge in the bug
reports and they are not correlated to each other.

From the 11 identified attributes, we find that CA can find
both the generic conversation-based attributes and domain spe-
cific attributes. Since bug reports are a special type of conversa-
tion, CA constructs several common attributes as for the generic
conversation-based summarization, e.g., SWT, DUP, and SLEN.
Meanwhile, many domain specific attributes can also be con-
structed by CA. For example, since the description of a bug re-
port may describe the problem of a bug, it usually attracts more
attention from the participators in a bug report than in generic
conversations, e.g., meeting conversations. CA constructs two
attributes regarding to the description of a bug report, namely
SWD and DES. Another difference is that several certain words
indicating the summary sentences, e.g., the word “problem,” sel-
dom occur in a generic conversation. The volunteers can inspire
the requesters to find these domain specific words. At last, the
volunteers also find that CODE is an important attribute in bug
reports. In contrast, code snippets may never appear in a generic
conversation. Hence, CA has the ability to capture both generic
conversation-based attributes and domain-specific attributes.

In addition to the qualitative analysis, we also check the pair
pairwise correlation between the attributes constructed by CA.
The correlation is measured by Spearman rank correlation test
(ρ), a widely used statistics method which is robust to nonnor-
mally distributed data [50], [51]. Given two attributes, Spearman
rank correlation test ranks the values of each attribute calculated
on a set of instances, e.g., the 2361 sentences in SDS dataset.
Then, it compares the relative position of each instance in the
two ranking lists to calculate the correlation of the two attributes.
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Fig. 9. Correlation analysis on the attributes.

Fig. 10. Experimental results of algorithms over SDS.

If two attributes are orthogonality, the value of ρ is 0. If they
are highly correlated, the value of ρ is −1 or +1. The value of
ρ is between −1 to +1. Fig. 9 presents the results of Spearman
hierarchical clustering on the 11 attributes. The results are cal-
culated by the “varclus” function in the R package of “Hmisc.”
We find that no correlation between two attributes exceeds 0.8
and the correlation between most attributes is lower than 0.5.
The low correlation means that each attribute by CA has its
unique contribution to select summary sentences. The under-
lying reason for the low correlation may be that, the reasons
written by the volunteers help the requesters easily understand
the meaning of each candidate attribute. Based on these reasons,
requesters merge the candidate attributes in advance under the
guidance of heuristic construction rules in Fig. 5.

Conclusion: CA can construct meaningful attributes with do-
main specific knowledge. The attributes constructed by CA for
bug report summarization have low correlations.

2) Answer to RQ2: In this part, the 11 new attributes by
CA are fed into LRCA. We investigate whether LRCA could
improve the existing approaches for bug report summarization.

In Fig. 10, we summarize the experimental results of all al-
gorithms with a bar chart in terms of four metrics, including
Precision, Recall, F-score, and Pyramid. Below the bar chart,

we also present the exact values of these algorithms. As shown
in Fig. 10, LRCA consistently outperforms all the comparative
algorithms in terms of every metric under the paired Wilcoxon
signed rank test (p < 0.05). LRCA improves BRC [15] by
1.33%, 10.11%, 8.94%, 5.89% in terms of Precision, Recall,
F-score, and Pyramid, respectively. Since LRCA and BRC em-
ploy the same model (logistic regression) with distinct sets of
attributes, it implies that the attributes by CA in LRCA con-
tribute to the success of LRCA.

When comparing LRCA against unsupervised algorithms,
LRCA improves Hurried [17] by 10.71% in terms of Precision.
Meanwhile, LRCA also outperforms Hurried by 1.8%–8.56%
in the other three metrics. Out of the four unsupervised algo-
rithms proposed in [18], namely Centroid, MMR, Grasshopper,
and DivRank, MMR performs best in all the four metrics. How-
ever, LRCA could also outperform MMR in every metric. For
example, the value of Pyramid achieved by LRCA is 64.88%
whereas that of MMR is 55.67%. For the other three metrics,
LRCA also performs better than MMR.

Based on the above observations, we can conclude that LRCA
with new attributes by CA can consistently outperform the com-
parative algorithms. It indicates that CA could provide effective
attributes for bug report summarization.

Conclusion: LRCA performs better than all the existing ap-
proaches. CA is a good way to construct effective attributes for
bug report summarization.

3) Answer to RQ3: In this part, we investigate the impact of
the number of volunteers on the effectiveness of LRCA.

We first partition the volunteers into distinct sized combi-
nations and achieve each combination’s contributed attributes.
The combination’s contributed attributes are referred to as the
attributes, which are constructed under the inspiration of the
reasons submitted by the volunteers in this combination. Then,
we evaluate the performance of LRCA with these attributes to
examine the impact of the number of volunteers.

In this study, we employ 21 volunteers to summarize bug
reports and provide the reasons for their decisions. Consider-
ing that two volunteers provide no reason, we investigate the
impact of the combinations of the remaining 19 volunteers.
We partition all the 19 volunteers into the combinations con-
sisting of 1, 2, 3, . . . , 19 volunteers. For example, we have
( 19

3 ) = 19 × 18 × 17/3! = 969 combinations with 3 volunteers
and ( 19

4 ) = 3876 combinations with 4 volunteers. For each com-
bination, we evaluate the performance of LRCA with its con-
tributed attributes over SDS. Although we have

∑19
i=1(

19
i ) dis-

tinct combinations, it should be noted that many combinations
contribute to the same set of attributes. Therefore, we only need
to evaluate the performance of LRCA with 113 distinct sets of
attributes.

In Fig. 11, we present the results of LRCA with the boxplots
over the equally sized combinations. In this figure, the metrics
achieved by LRCA are plotted against the number of volunteers
within each combination. As shown in Fig. 11, the median val-
ues of the metrics gradually increase and retain relatively stable
along with the growth of the number of volunteers. For example,
the median values of Recall keep nearly the same when more



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON RELIABILITY

Fig. 11. Results of LRCA with distinct sets of attributes on SDS.

than 13 volunteers are involved. We can also observe similar
trends in terms of Precision, F-score, and Pyramid. Meanwhile,
the ranges of the boxplots gradually decrease along with the
growth of the number of volunteers. It indicates that LRCA
could usually achieve better performance when involving more
volunteers. However, the impact of the number of volunteers
gradually declines along with the growth of the number of vol-
unteers. In this study, we also use significant level to demonstrate
the difference of different combinations. We use the median
values of the evaluation metrics to denote the performance of
different sized combinations. We find that when the number of
volunteers increases to 13, we can achieve no significant dif-
ferent performance with all 19 volunteers on all the evaluation
metrics under the paired Wilcoxon signed rank test (p < 0.05).

We also present the winning tables of LRCA against each ex-
isting approach in Tables VI–IX. Each cell in the winning tables
for k volunteers indicates the portion of combinations with k
volunteers providing effective attributes such that LRCA out-
performs its comparative algorithms. In these tables, we mark
all the cells with values larger than 50% in dark. For example,
52.1% of the combinations with 12 volunteers could contribute
the attributes with which LRCA outperforms BRC in terms of
Precision. When we consider the metric of Precision, over 50%
combinations with more than 12 volunteers could contribute
effective attributes with which LRCA outperforms all the com-
parative approaches. For all the four metrics, we can conclude

that when more than 13 volunteers are involved, over 50% com-
binations could have LRCA achieve better performance than all
the baselines.

In the following part, we investigate the underlying reasons
of the behaviors of LRCA for distinct sized combinations. In
Table X, we list the attributes contributed by the volunteers.
For each volunteer, we use one column of entries to present
her/his contributed attributes. As shown in Table X, we have the
following observations.

1) No one could contribute to all the attributes. The vol-
unteers’ capabilities of contributing attributes vary from
volunteer to volunteer.

2) It is easier to achieve some attributes than other attributes.
In Table X, only two volunteers (V6 and V7) contribute
to the attribute CODE while 13 volunteers contribute to
the attribute SWT.

3) Volunteers are able to compensate with each other to in-
spire the requesters to construct more attributes, until all
the attributes are gradually covered.

Based on the aforementioned observations, when involving
more volunteers, more discriminative attributes can be achieved
by CA. Hence, the results of LRCA gradually improve and retain
stable along with the growth of the number of volunteers.

Conclusion: LRCA with new attributes could achieve bet-
ter performance when involving more volunteers. Along with
the growth of the number of volunteers, its impact on LRCA
gradually declines.

4) Answer to RQ4: In this section, we compare LRCA
against the existing algorithms over large datasets.

Since it is time-consuming and tedious to annotate a large
number of bug reports, the publicly available dataset SDS only
contains 36 annotated bug reports. To evaluate the performance
of algorithms over large datasets, we build a series of new large
datasets BRSBs with 105 177 bug reports in an alternative.

As to the literature [17], [20], the title of a bug report can be a
good high-level summary of this bug report. Developers usually
first focus on the bug report title to understand the topic of the
bug report, and then read the important sentences (typically, the
selected sentences by an algorithm) to find the main problems
and solutions of the bug [17]. Inspired by this phenomenon,
given a bug report, we could inject its title into the contents of
this bug report, namely the concatenation of the bug report’s de-
scription and comments, to form a revised bug report. Then, we
can evaluate each algorithm by checking whether the algorithm
can detect the title in the resulting summary from the revised
bug report. If the title is detected, it means that the algorithm has
the ability to extract such high-level summary sentences from a
bug report.

We download bug reports from the same four open source
projects as in SDS, namely Mozilla, Eclipse, KDE, and Gnome.
Table XI presents the statistical information about these down-
loaded bug reports. We use the bug reports submitted to Mozilla,
Eclipse, KDE in 2008 which are marked as “fixed” to create the
BRSBs, since nearly 40% of the bug reports in SDS are sub-
mitted in 2008. However, the Gnome bug repository is closed
after 2005, so we choose the latest fixed bug reports, namely
the reports submitted in 2005 to create the BRSBs. Follow-



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JIANG et al.: TOWARD BETTER SUMMARIZING BUG REPORTS WITH CROWDSOURCING ELICITED ATTRIBUTES 15

TABLE VI
WINNING TABLE OF LRCA AGAINST COMPARATIVE ALGORITHMS OVER Precision

TABLE VII
WINNING TABLE OF LRCA AGAINST COMPARATIVE ALGORITHMS OVER Recall

TABLE VIII
WINNING TABLE OF LRCA AGAINST COMPARATIVE ALGORITHMS OVER F-Score

TABLE IX
WINNING TABLE OF LRCA AGAINST COMPARATIVE ALGORITHMS OVER Pyramid

TABLE X
DISTRIBUTION OF ATTRIBUTES BY VOLUNTEERS

TABLE XI
STATISTICS OF BUG REPORTS IN BRSBS

ing this criterion, we collect 25 696 reports for Eclipse, 49 319
reports for Mozilla, 21 039 reports for KDE and 9123 reports
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Fig. 12. Experimental results of algorithms over BRSBs.

for Gnome as the new datasets. In these datasets, the title of
every bug report is injected to a random location among the de-
scription/comments as a specific “comment” (provided by the
reporter) so as to form a revised bug report. The underlying
reason for this action is that we find that a bug report usually
presents conversations in a relatively loose form. For example,
a user may inject a comment in the conversation to assess or
conclude the sentences several comments before.9 Thus, the in-
jected title can be viewed as an assessment or conclusion of
previous comments said by the reporter.

Since there exists no manually annotated gold standard sum-
mary, we evaluate algorithms in terms of HitRate

HitRate = Numhit/Numreport (6)

where Numhit is the number of bug reports whose titles are
successfully retrieved by algorithms and Numreport is the total
number of bug reports in every new dataset.

For the comparative algorithms, Hurried employs the title of
a bug report to calculate one of its attributes. Hence, for a fair
comparison, we only run the other comparative algorithms on
BRSBs. Fig. 12 summarizes the results.

As shown in Fig. 12, Centroid performs best among the
four unsupervised algorithms. The values of HitRate achieved
by Centroid are 48.28%, 48.83%, 44.95%, and 44.43% over
Mozilla, Eclipse, KDE, and Gnome datasets, respectively. In
contrast, the values of HitRate achieved by Grasshopper are
25.50%, 30.24%, 29.14%, and 28.70%. When compared against
the best unsupervised approach, LRCA improves Centroid by
1.88%–13.65% over distinct datasets. For the other unsuper-
vised approaches, LRCA improves them by up to 29.46% in
terms of HitRate. When compared against the existing super-
vised approach BRC, LRCA significantly improves BRC by
22.44%–34.72% over these new datasets. The underlying rea-
son of the poor performance of BRC may be that each bug report
in BRSBs only has one summary sentence (the injected title)
and many negative instances (all the other sentences). The im-
balanced datasets may affect the performance of the attributes

9In Eclipse bug report 214067, a user adds comment 6 to assess a far away
comment 2 (https://bugs.eclipse.org/bugs/show_bug.cgi?id=214067).

Fig. 13. Question related to the interests of volunteers.

TABLE XII
SURVEY RESULTS

in training BRC. In contrast, the attributes in LRCA can handle
both the manually annotated dataset SDS and the automatically
created datasets BRSBs.

Conclusion: LRCA outperforms the competitive algorithms
on the large datasets BRSBs. The attributes constructed by CA
can handle different types of datasets.

5) Answer to RQ5: In this part, we analyze the feasibility of
recruiting interested volunteers with the necessary knowledge
for CA.

In this study, we invite 450 college students to participate in
CA. We successfully recruit 21 volunteers, i.e., around 5% of
college students are involved. It indicates that directly recruiting
students for crowdsourcing SE tasks is a practical way. Prior
study in the literature also suggests that college students inhabit
a large amount of volunteers in a crowdsourcing scenario [52].
Furthermore, we ask the volunteers in this study about their
interests in completing the tasks (see Q5 in Fig. 13). The results
are presented in Table XII. The average interest of the volunteers
to this task is 4.45, i.e., these volunteers enjoy such tasks with
a reward. The previous study [53] also proves that a reward can
attract volunteers to participate in crowdsourcing tasks. Hence,
CA can recruit interested volunteers to complete an SE task.

In addition, CA requires little domain knowledge of the vol-
unteers. In this study, we ask the volunteers to evaluate the
readability of crowdsourcing bug reports (Q3 in Fig. 8). If a
volunteer marks point 5 on this question, it means that the bug
reports are very easy for him/her to understand. Although these
volunteers have never conducted researches on bug reports, most
volunteers can easily understand the bug reports with the average
readability score of 3.75 (in Table XII). The result means that it
is possible to recruit volunteers with the necessary knowledge
to understand CA tasks by inviting college students.

Conclusion: We can employ interested volunteers with suffi-
cient knowledge to participate in CA.
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Fig. 14. Discriminability of attributes in LRCA and BRC.

F. Summary of RQs

Inspired by a group of volunteers, LRCA with crowdsourced
attributes could well summarize bug reports against the com-
parative approaches. The success of LRCA also validates that
crowdsourcing is helpful to facilitate resolving SE tasks.

VII. DISCUSSION

A. Attribute Comparison

Since both BRC and LRCA propose a set of attributes for bug
report summarization, we compare these attributes in Fig. 14.
In the figure, we rank the attributes from different algorithms
according to the attribute discriminability. The discriminability
is computed by Fisher-score [54], a score to evaluate the at-
tributes discriminability in supervised algorithms [15]. Given a
set of instances x1 , x2 , . . . , xm with n+ positive and n− negative
instances, the ith attribute’s value of Fisher-score is computed
as follows:

Fisher-score(i)=
(x̄+

i − x̄i)2 + (x̄−
i − x̄i)2

1
n+−1

∑n+
k=1(x

+
k,i−x̄+

i )2+ 1
n−−1

∑n−
k=1(x

−
k,i−x̄−

i )2

(7)

where x̄i , x̄+
i , x̄−

i are the average values of the whole, the
positive, and the negative instances’ ith attributes, respectively.
x+

k,i is the value of the kth positive instance’s ith attribute, and
x−

k,i is the value of the kth negative instance’s ith attribute.
According to the formula, the attributes with higher values of
Fisher-score are more capable of discriminative instances. We
calculate Fisher-score based on the human annotated dataset
SDS and sort all the attributes in descending order in Fig. 14.

As shown in Fig. 14, both LRCA and BRC utilize many
discriminative attributes to summarize bug reports. CODE,
SWT, and SLEN are the top three most helpful attributes in
LRCA, and SLEN, CWS, and CENT1 are important to BRC.
Some attributes constructed by CA are also utilized in BRC,

including SLEN, SLOC (named as CLOC in BRC), and
REP (named as BEGAUT in BRC). These attributes have
different discriminability. For example, SLEN is much more
discriminative than REP (or BEGAUT) in both attribute sets.
These overlapped attributes are generic conversation-based
attributes to measure the sentence length, sentence location, and
the reporter of a bug report. Although BRC proposes 24 generic
conversation-based attributes, CA also identifies other helpful
generic attributes for bug report summarization, e.g., SWT,
DUP, and SI. In addition, after manually summarizing bug
reports by the volunteers, domain-specific attributes can also be
identified from the volunteers’ reasons, e.g., CODE and SWD.
These domain-specific attributes have high discriminability to
detect summary sentences.

Another difference between attributes in BRC and LRCA
is that, many attributes in BRC have similar meaning or dis-
criminability. For example, BRC measures Tprob with similar
attributes MNT and MXT. In contrast, the correlation between
LRCA attributes is low as shown in Fig. 9. Most correlation
values are below 0.5. The attributes SWD and DES are partially
correlated with a correlation value of 0.72. However, when we
remove one of the two attributes, e.g., DES, F-score slightly in-
creases from 0.4713 to 0.4779 and Pyramid drops from 0.6488
to 0.6436, which means DES is still useful to some evaluation
metrics.

To conclude, CA could identify unique attributes that are
different from previous studies. Some unique attributes have
high discriminability to detect summary sentences.

B. Requester Background

This section investigates the influence of requesters’
background knowledge on attributes construction. We first
compare the constructed attributes by the two requesters,
and then show the influence of requesters on bug report
summarization.

In this study, two requesters construct attributes from volun-
teers’ reasons independently. Req1 has a research experience
in software engineering for 3 years and Req2 has researched
on this area for 7 years. The two requesters achieve a concor-
dance rate of 76.5% on attribute construction as mentioned in
Section V-A. The conflicts are mainly from two parts:

1) the conflicts on selecting candidate attributes. Requesters
may select different terms or phrases as candidate at-
tributes from the reasons. For example, for the reason
“this sentence explains a best way of solving the prob-
lem,” the object of the reason is “the best way of solving
the problem.” Req1 constructs attributes from the term
“problem.” He utilizes 0 and 1 to represent whether a sen-
tence contains this term (CCW), since the term “problem”
also exists in the corresponding sentence of the bug re-
port. In contrast, Req2 constructs the attribute SWD from
this reason as explained in Section V-B. However, we find
that the influence on such conflicts may be minimized
in the crowdsourcing setting. Req1 could also construct
the attribute SWD from the reason “it is similar with the
sentences in the bug report” (in Section V-B);
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TABLE XIII
RESULTS ON LRCA, LRCAREQ1 , AND LRCAREQ2

2) the conflicts on calculating the attributes. Requesters may
calculate candidate attributes with different metrics. We
explain all the differences in attribute calculation as fol-
lows:
[SWT] Req1 utilizes words in the entire bug reports to
represent the bug report topic, while Req2 regards the top
20% words with highest TF-IDF values as the bug report
topic.
[SWD] Req1 directly measures the similarity between the
current sentence and the description of the bug report,
while Req2 sets the sentences in bug report description
to 1.
[CODE] Two requesters detect code snippets with differ-
ent heuristic patterns. They merge the heuristic patterns
to achieve the final ones.
For the aforementioned two conflicts, the requesters’
background knowledge has small influence on the can-
didate attribute selection, since all the attributes could
be detected when the number of reasons is large. How-
ever, the background knowledge may influence the way
to calculate attributes. The following part discusses this
influence on bug report summarization.

We construct two additional algorithms named LRCAReq1
and LRCAReq2 , which utilizes the attributes constructed from
Req1 and Req2, respectively. Table XIII mentions the results on
applying LRCA, LRCAReq1 , and LRCAReq2 on the SDS dataset.
As shown in Table XIII, when only utilizing the attributes from
Req1, all the evaluation metrics drop, e.g., Precision drops from
69.12 to 68.67. The attributes from Req2 are slightly better,
which outperforms LRCAReq1 from 0.24% to 1.65% on different
evaluation metrics. The reason may be that Req2 has 4 years
more research experience on software engineering. After pair-
wise discussion, most of the evaluation metrics increase with
the final attributes.

To conclude, the requesters’ background knowledge has small
influence on the candidate attribute selection. It mainly influ-
ences the attribute calculation, resulting in different perfor-
mances on bug report summarization.

C. Attributes Construction by Related Work

This section investigates whether we can achieve effective
attributes by reviewing related work for bug report summariza-
tion. To answer this question, we identify the attributes in related
work and propose an algorithm named Combine for comparison
which combines the attributes from related work.

As discussed in Section VI-C, besides the 24 attributes in
BRC, the unsupervised algorithms also have attribute-related

TABLE XIV
RESULTS ON LRCA AND COMBINE

elements. The algorithm Hurried selects a summary sentence
with consideration of its similarity with the bug report title, the
sentences in the bug report description, and the sentiment of a
sentence. We construct three attributes from this algorithm.

1) We calculate the similarity between the current sentence
and the bug report title with VSM.

2) We use 0 and 1 to represent whether a sentence is in the
bug report description.

3) We detect the sentiment of a sentence [55], and use 1, 0,
−1 to denote the positive, neutral, negative sentiment.

In addition, the algorithms Centroid, MMR, Grasshopper,
and DivRank use words and sentences as attributes. Since there
are more than 2000 sentences in the SDS dataset, the high-
dimension and sparse attributes are usually ineffective for clas-
sification [35]. We remove these attributes. At last, there are 27
attributes for Combine. We feed these attributes into the same
framework as LRCA for a fair comparison.

As mentioned in Table XIV, LRCA significantly outperforms
the algorithm Combine. LRCA improves Combine by 4.81%,
8.25%, 7.41%, and 5.04% with respective to Precision, Recall,
F-score, and Pyramid, respectively. The reason is that some
attributes in previous studies may have negative influence on
Combine. Besides, CA also identifies several discriminative at-
tributes to improve the performance of LRCA.

To conclude, since researchers tend to combine several
methods together to construct attributes as to the survey in
Section III, CA is promising to construct more effective at-
tributes after researchers utilizing the traditional methods, e.g.,
knowledge transfer, heuristic, or experience, etc.

D. Student Volunteers

We discuss whether student volunteers can be regarded as
representatives to draw conclusions for CA. We recruit students
to draw conclusions for three reasons.

First, we find that students can represent the volunteers in
crowdsourcing scenarios, since students inhabit a large number
of volunteers in crowdsourcing platforms [52].

Second, student groups are widely used in previous studies
for crowdsourcing [56], [57]. Researchers also show that, for
some SE tasks, students and professionals may achieve similar
performance except for minor differences [58]. Since CA asks
volunteers to fill in reasons for a summary sentence instead
of deciding the final attributes, students may have acceptable
performance.

Third, in this study, we also consider the background knowl-
edge of students. For a crowdsourcing task related to SE, we
require that all the students have the background knowledge of
computer science and English.
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Hence, we use student groups as volunteers to draw conclu-
sions for the attribute construction methods CA.

VIII. THREATS TO VALIDITY

A. Generality

The generality of CA should be further studied. In this study,
we evaluate CA with more than 100 000 bug reports from four
desktop software. With the increasing number of mobile apps
[30], we also plan to apply CA to summarize bug reports of
mobile apps in the future. Besides bug report summarization,
CA can also be leveraged to facilitate many other SE tasks over
textual SE data, such as severity prediction [59] and duplicate
bug reports detection [8]. For example, in the SE task of severity
prediction, requesters can employ some volunteers to manually
check the severity of a population of bug reports and ask them
to provide the reasons in making their decisions. With such rea-
sons, requesters could construct new attributes. Hence, we plan
to extend CSEP to support more types of SE data. With the
extended CSEP, we can evaluate CA with more SE tasks thor-
oughly against all the existing attribute construction methods.

B. Subjectiveness

Attribute construction is a subjective process and the effec-
tiveness of CA might be influenced by the requesters, especially
for deriving adequate measures for attributes. Since two re-
questers in this study achieve the concordance rate of 76.5% in
constructing attributes for bug report summarization, it implies
that CA with properly defined construction rules could work
well in achieving new attributes for the SE task. In addition,
requesters employ several naive methods to measure attributes,
including VSM, Boolean values, etc., to alleviate the influence
of sophisticated measurement methods.

Besides, the background knowledge of requesters is a threat
to the effectiveness of CA. In this study, we employ two re-
questers to construct effective attributes from the reasons by
volunteers. Since both requesters have a research experience on
SE for more than three years, there is a threat that poor quality
attributes may be constructed when requesters have little back-
ground knowledge, e.g., they have no research experience on
SE. Since experienced researchers still prefer combining sev-
eral methods to construct attributes according to our survey, CA
is helpful for them.

Another threat is the bias on evaluating the requesters’ back-
ground in Section VII-B. We ask the authors of this study to
act as the requesters, which may bring a bias on attribute con-
struction. To alleviate this threat, we do not predefine coding
schemes or possible attributes for bug report summarization.
The requesters independently infer attributes from reasons un-
der HCRs. Hence, it demonstrates that with a set of construc-
tion rules, crowd-generated data in crowdsourcing are crucial
resources to infer attributes for SE tasks.

To better evaluate these threats, in future work, we plan to
recruit more requesters of different experience and compare
the differences of them in constructing attributes for the same
groups of reasons. In addition, we also plan to automate CA

for large numbers of reasons. We find that many parts of HCRs
can be automated, including analyzing the part-of-speech to
identify candidate attributes, grouping candidate attributes by
synonyms, etc. These parts can be automated by some natural
language processing techniques.

C. Crowdsourcing Process

As a type of crowdsourcing, CA may be impacted by some
other factors, including the quality of answers and the design
of questions, etc. These factors have been investigated in the
research of traditional crowdsourcing. Requesters can better
control the quality of answers with gold standard data when
volunteers process the task [60]. In addition, a well-designed
question can be achieved by following some guidelines [61].
These methods for traditional crowdsourcing could be employed
to further improve CA.

Meanwhile, the quantity and quality of the volunteers are the
threats to crowdsourcing process. For the quantity, by inviting
college students, CA can attract tens of volunteers to participate
in. In addition, the results of supervised algorithms with new
attributes constructed by CA gradually become stable along
with the growth of the number of volunteers. For the quality,
solid SE knowledge is not mandatory for every individual
volunteer, since volunteers could complement with each other
in the process of CA.

IX. RELATED WORK

In this section, we review the related work of this study,
including attribute engineering and crowdsourcing in SE.

A. Attribute Engineering in MSR

Attribute engineering means feature engineering in the soci-
eties of data mining and machine learning, which includes at-
tribute construction, attribute selection, and attribute extraction
[31]–[33]. Although no systematic work has been conducted
on attribute construction in MSR, a few studies have been per-
formed on both attribute selection and attribute extraction for
facilitating SE tasks.

Yang et al. show that three attribute selection schemes (in-
formation gain, chi-square, and correlation coefficient) can im-
prove severity prediction of defect reports on test cases from
Eclipse and Mozilla [37]. Shivaji et al. investigate several at-
tribute selection schemes to substantially reduce the number of
attributes and achieve significant improvement on the perfor-
mance of Naı̈ve Bayes and support vector machine over the
task of code change-based bug prediction [34]. Xuan et al. com-
bine instance selection and attribute selection to reduce software
data and show that data reduction can effectively improve the
accuracy of bug triage [35].

In contrast, Turhan et al. employ two attribute extraction
techniques, namely principal component analysis and Isomap,
for extracting new attributes from existing ones and evaluate
these methods with support vector regression on the SE task of
software cost estimation [36].
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The above studies are based on the initial set of attributes.
However, none of the above studies discusses the methods for
constructing such initial attributes. In this study, we investigate
how to employ crowdsourcing to construct new attributes for a
typical SE task, namely bug report summarization.

B. Crowdsourcing in Software Engineering

Recent years have witnessed the growing research of crowd-
sourcing in SE. In general, a crowdsourcing method breaks an
SE task into some subtasks and assigns them to crowd for solv-
ing. Kazman and Chen present an overview analysis on how
crowdsourcing changes the future of SE [29]. Recently, Mao
et al. survey the crowdsourcing usage in SE [62].

A lot of research work has been conducted to bring crowd-
sourcing into SE processes, including requirements analysis,
software design, software development, testing, and mainte-
nance. In requirements analysis, Lim et al. develop a tool called
StakeSource to identify stakeholders by mutual recommenda-
tion [40]. The proposed model is also able to conduct require-
ments elicitation and prioritization by asking stakeholders to
evaluate requirements proposed by other stakeholders [63]. In
software design, LaToza et al. explore the recombination strate-
gies in the process of software design competitions [64]. In the
process of software development, Nag et al. divide the project
NASA SPHERES into small modules, and outsource them to
the crowd in TopCoder [65]. Lin et al. utilize crowdsourcing
to capture the expectations of users of whether a sensitive re-
source can be used for apps in a given category [66]. In software
testing, Chen and Kim successfully leverage crowdsourcing to
assist test input generation [41]. Micallef et al. recruit crowd to
assist in testing apps in different mobile hardware scenarios [67].
Besides, the test report is also an important resource for crowd-
sourcing studies. Feng et al. propose test report prioritization
strategies to assist reading crowdsourced test reports [56], [57].
Wang et al. classify test reports to assist crowdsourced testing
[68]. In addition, some researchers leverage crowd documenta-
tion to facilitate API documentation across software processes
[69], [70].

Although much research work has been performed, no related
work has been conducted for attribute construction with crowd-
sourcing. In this study, we attempt to adopt crowdsourcing to
construct new attributes in MSR.

X. CONCLUSION

Bug report summarization is an essential task in software
maintenance. It saves developers’/testers’ time in understand-
ing the software bugs and their solutions [15], and eventually
improves the software quality. In this study, we investigate how
to employ crowdsourcing to facilitate attribute construction to
improve the task of bug report summarization. We first reveal the
existing methods for attribute construction in MSR by a survey.
Then, we propose the new method CA to infer effective at-
tributes from the crowd-generated data in crowdsourcing. As to
the best of knowledge, it is the first attempt toward constructing
new attributes by crowdsourcing data. With CA, we successfully
construct 11 attributes and propose the new algorithm LRCA to

summarize bug reports. To evaluate the performance of LRCA,
we build a series of large datasets BRSBs with 105 177 bug
reports. Extensive experiments over both the existing dataset
SDS with 36 annotated bug reports and BRSBs validate the
effectiveness of LRCA.
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