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Abstract—Simulink compiler testing is important since all
cyber physical system (CPS) models are required to be com-
piled by Simulink compiler. Current testing processes use CPS
models generated by CPS model generators for testing. Since the
effectiveness of CPS model generators heavily relies on suitable
generator configurations, existing approaches randomize configu-
rations or infer configurations with historical bug information to
generate diverse bug-triggering CPS models. However, these ap-
proaches are designed for general-purpose compilers (e.g., GCC),
which have two challenges when testing Simulink compiler,
namely the CPS model representation challenge on representing
CPS models for diversity measurement and the configuration
learning challenge on learning configurations to generate diverse
CPS models. To address these challenges, we propose RECORD,
a new configuration diversification approach. RECORD has a
feature vectorization component, which addresses the first chal-
lenge by representing CPS models as feature vectors to capture
the local and global characteristics of CPS models for diversity
measurement. RECORD then uses a reinforcement learning
component to generate diverse CPS models based on the learned
relationship between configuration updates and diversity changes,
thus addressing the second challenge. Experiments demonstrate
that within three months, RECORD reported 11 confirmed
Simulink compiler bugs, significantly outperforming the state-of-
the-art configuration diversification approaches. RECORD can
also facilitate different testing strategies to find more bugs.

Index Terms—Cyber-physical system, Simulink, configuration
diversification, compiler testing, reinforcement learning

I. INTRODUCTION

CYBER physical system (CPS) development tools, such
as MathsWork Simulink, are fundamental platforms for

developers to design and analyze a CPS before developing
embedded code [1], [2], [3]. In a CPS development tool,
developers design CPS models, a kind of block diagram
with blocks and connections, to simulate the behavior of a
CPS. As an industrial standard [2], Simulink has been widely
used by developers to design CPS models for many safety-
critical applications, such as aerospace and healthcare [4],
[5], [6], [7]. Simulink analyzes and compiles a CPS model
with its compilation system (i.e., Simulink compiler), and
then generates embedded code for deploying in target CPS
applications. However, Simulink compiler may contain bugs.
These bugs can inject unexpected behaviors into a CPS model,
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which heavily threaten the correctness and safety of target CPS
applications.

To find Simulink compiler bugs, several approaches for
Simulink compiler testing have been proposed [1], [2], [3].
These approaches conduct testing based on a large number
of CPS models generated by CPS model generators (e.g.,
SLforge [1]). The CPS models are compiled by Simulink
compiler with different settings that are expected to obtain the
same outputs. By analyzing the output inconsistency, Simulink
compiler bugs can be found based on the idea of differential
testing [1]. In addition, these CPS models can also be mutated
to generate equivalent CPS model variants for Equivalence
Modulo Input (EMI)-based testing [2].

Despite the importance of automatically generated CPS
models, CPS model generators largely depend on suitable
configurations (e.g, the probability to generate a certain type of
blocks) to generate bug-triggering CPS models, since the same
configuration tends to generate CPS models with a similar
block distribution and trigger duplicate bugs [8]. In the area of
general-purpose compiler testing (e.g., GCC and LLVM), two
approaches have been proposed to generate diverse programs
by configuration diversification, including swarm testing [9]
and history-based testing [8]. They randomize configurations
or use historical bug-triggering programs to infer configura-
tions for generating diverse programs to explore more compiler
input space.

However, swarm testing and history-based testing may not
test Simulink compiler effectively due to the CPS model rep-
resentation challenge and the configuration learning challenge.
The first challenge occurs, because these studies generate
programs by controlling the probability to generate different
local program characteristics (i.e., features), such as return
statements. However, most of these features are not supported
by CPS model generators. They also ignore the value of global
CPS model characteristics (e.g., the CPS model architecture)
for guiding CPS model generation. Hence, it is important to
mine effective features to represent CPS models for measuring
their diversity. Regarding the second challenge, history-based
testing relies on thousands of programs that can trigger bugs
in old compiler versions (generated by the program generator
Csmith) to infer configurations. However, as a kind of well-
developed commercial software, it is not feasible for a CPS
model generator to find thousands of bugs in Simulink com-
piler for configuration learning. Hence, the second challenge
is to learn the configurations to generate CPS models with
different block distributions, without using historical bug-
triggering CPS models.

To generate diverse CPS models effectively, we propose
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RECORD, a Reinforcement lEarning based COnfiguRation
Diversification approach for Simulink compiler testing, to
address the aforementioned challenges. RECORD has two
main components, i.e., a feature vectorization component and
a reinforcement learning component. RECORD aims to gen-
erate CPS models with diverse distributions of bug-triggering
features by diversifying CPS model generator configurations.
These CPS models are expected to explore larger input space
of Simulink compiler to trigger more bugs. In the feature
vectorization component, we construct a set of local and global
features, which capture the characteristics of both a single
block in a CPS model (e.g., the number of Subsystem blocks)
and a complete CPS model (e.g., the CPS model architecture).
We vectorize CPS models as feature vectors for measuring
their diversity to address the first challenge. The reinforcement
learning component iteratively generates CPS models with dif-
ferent CPS model generator configurations. In each iteration,
this component learns the reward (i.e., diversity) to be got
when certain changes are made to configurations by comparing
the feature vectors of newly and previously generated CPS
models. With this knowledge, RECORD trains a double deep
Q-network (DDQN) to intelligently update configurations for
generating CPS models with high expected rewards. Hence,
the configuration learning challenge is addressed. Finally, CPS
models generated in each iteration are used to test Simulink
compiler by differential testing.

To evaluate the effectiveness of RECORD, we compare
different configuration diversification approaches for Simulink
compile testing. RECORD significantly outperforms the state-
of-the-art approaches (i.e., swarm testing and history-guided
testing) in terms of the bug-finding capability of Simulink
compiler. Within three months, RECORD found 11 confirmed
bugs in the recent Simulink version R2021b, including 9 new
bugs. In contrast, baselines only found at most three bugs.
CPS models generated by RECORD can also be mutated to
facilitate other compiler testing strategies. Using these CPS
models, an EMI-based Simulink compiler testing approach
SLEMI finds 3 more bugs compared to using CPS models
generated by a single set of configurations. In addition, by
analyzing the distribution of different blocks in the generated
CPS models, we find that the reinforcement learning compo-
nent improves the ability of RECORD to generate diverse CPS
models.

In summary, this study makes the following contributions:

• We propose a novel approach RECORD to test Simulink
compiler. RECORD combines a feature vectorization
component and a reinforcement learning component to
address the CPS model representation and the configu-
ration learning challenges in Simulink compiler testing,
respectively.

• We conduct extensive experiments to assess the bug-
finding capability of RECORD. RECORD found 11 con-
firmed Simulink compiler bugs, including 9 new bugs.

• We release RECORD as a tool for Simulink compiler
testing [10].

The rest of the paper is organized as follows. Section II
presents the background and explains the motivation and chal-

TABLE I
CATEGORIES OF BLOCKS IN THE CPS MODELING LANGUAGE

# Library Description

1 Continuous Continuous function blocks such as Deriva-
tive and Integrator

2 Customizable
Blocks

Blocks with customizable appearance that
control parameter values and display signal
values during simulation

3 Dashboard Blocks that can control parameter values
and display signal values during simulation

4 Discontinuities Discontinuous function blocks such as Sat-
uration

5 Discrete Discrete time function blocks such asUnit
Delay

6 Logic and Bit Oper-
ations

Logic or bit operation blocks such as Logi-
cal Operator and Relational Operator

7 Lookup Tables Lookup table blocks such as Cosine
8 Math Operations Mathematical function blocks such as Sum
9 Matrix Operations Blocks for modeling matrix operations

10 Messages & Events Blocks for modeling message-based com-
munication

11 Model Verification Blocks for self-verifying models, such as
Check Input Resolution

12 Model-Wide Utili-
ties

Model-wide operation blocks such as Model
Info and Block Support Table

13 Ports and Subsys-
tems

Blocks related to subsystems, such as In-
port, Outport, Subsystem, and Model

14 Signal Attributes Modify signal attribute blocks such as Data
Type Conversion

15 Signal Routing Route signal blocks such as Bus Creator
16 Sinks Display or export signal data blocks such as

Scope and To Workspace
17 Sources Generate or import signal data blocks such

as Sine Wave and From Workspace
18 String String manipulation blocks
19 User-Defined Func-

tions
Custom function blocks such as MATLAB
Function and MATLAB System

lenges of this study. Section III introduces the basic machine
learning algorithms used in this paper. Section IV describes
the core component of RECORD. Section V reports on the
evaluation of RECORD. Section VI-C discusses the threats
to validity. Section VII surveys related work. Section VIII
concludes the paper.

II. BACKGROUND AND MOTIVATION

A. CPS Models and Simulink

In a CPS development tool, developers design a CPS
with CPS models. As a commercial CPS development tool,
Simulink has become an industry standard, which is used
to design and analyze CPS models for many safety-critical
applications, such as aerospace and healthcare [4], [5], [6], [7].
Simulink analyzes and compiles CPS models with its compi-
lation system (i.e., Simulink compiler), and then executes the
compiled CPS models to simulate the behavior of the CPS.
When the simulation is the same as developers’ expectations,
embedded code is generated with Simulink, which is finally
deployed in the target CPS.

A CPS model is designed by the CPS modeling language.
Each CPS model is a block diagram that contains a set
of blocks and their connections. A block performs some
operations on the data (which are usually signals) received
from its input ports, and passes the computation results to the
output ports [1], [2], [11]. These output ports are connected to
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subsequent blocks through a set of connections (i.e., lines in
the block diagram) for further computation. At last, the final
computation results are presented to developers.

As shown in Table I, there are 19 categories of blocks
in the CPS modeling language classified by Simulink devel-
opers [12]. Each category is organized as a library, which
includes several blocks to reflect some characteristics of CPS
models. For example, the Ports and Subsystems library con-
tains blocks related to such as Inport, Outport, Subsystem, and
Model. Blocks in this library can define hierarchical subsystem
structures of CPS models, where a parent block contains
several child blocks with the acyclic relation. However, the
CPS modeling language does not have complete and publicly-
available formal language specifications [13], [14], [15]. Lan-
guage semantics are usually defined in the closed-source and
complex code base of Simulink, which increases the difficulty
to design and generate valid CPS models.

B. Simulink Compiler Testing by CPS Model Generation

Although all CPS models are analyzed and compiled
through Simulink compiler, Simulink compiler may contain
bugs [1], [2]. These bugs can crash Simulink or inject unex-
pected behaviors in target CPS applications.

Existing approaches for Simulink compiler testing are based
on differential testing. These approaches take CPS models as
input. The CPS models are compiled by Simulink compiler
with different settings that are expected to obtain the same
outputs. If the outputs are different, a Simulink compiler bug
could be triggered. Since differential testing requires a large
number of CPS models, several CPS model generators have
been proposed (e.g., CyFuzz [3] and SLforge [1]). Currently,
SLforge is the state-of-the-art CPS model generator [1], [2].
SLforge supports a subset of the most-used CPS modeling
language specifications, such as specifications for Discrete,
Math Operations, Ports and Subsystems, Sinks, and Sources
libraries [1]. SLforge has a configuration file to guide the CPS
model generation, which defines the probability to generate
blocks in each library, the structure of CPS models (e.g.,
the maximum level of the hierarchy, the number of blocks),
and the execution strategy (e.g., the threshold for time-out,
the simulation mode). Based on the configuration, SLforge
generates CPS models. These CPS models can be used for
classical differential testing or regarded as inputs (i.e., seed
CPS models) for other testing strategies (e.g., EMI-based
testing [2]). Studies showed that SLforge had triggered 8 new
Simulink compiler bugs in five months [1].

C. Motivation

CPS model generators largely depend on suitable configura-
tions (e.g., the probability to generate blocks in each library) to
generate bug-triggering CPS models. However, existing studies
for general-purpose compilers (e.g., GCC and LLVM) show
that program elements (e.g., if and return statements in C)
have diverse probabilities to trigger compiler bugs [16], [8].
Since few studies investigate this phenomenon in the CPS
modeling language, we conduct a preliminary study to analyze

Fig. 1. Distribution of blocks in the collected CPS models

the characteristics of bug-triggering CPS models to motivate
this study.

We manually reproduced 50 CPS models that can trigger
Simulink compiler bugs from the MathWorks’ bug reporting
platform [17]. We collected 50 CPS models for two reasons.
On the one hand, the complete list of bug reports is neither
available nor traceable on this platform. Only a few Simulink
compiler bugs are available to be collected and reproduced.
On the other hand, as a preliminary study, 50 bugs can
already show the distribution of different program elements
(i.e., blocks) in bug-triggering CPS models.

Fig. 1 presents the distribution of blocks in the most-used
libraries [1], which are also the libraries supported by SLforge.
We add a class ‘others’ to count the distribution of blocks in
other libraries. We find CPS models that can trigger Simulink
compiler bugs have diverse block distributions. Math Oper-
ations and Ports and Subsystems are the two most important
libraries to find Simulink compiler bugs. However, the variance
of block distributions is also large. For some CPS models,
the ratio of blocks in these two libraries is less than 0.2.
Hence, the diversity and the interaction of blocks in different
libraries should be considered when generating CPS models.
Such diversity cannot be handled by CPS model generators
using a single set of configurations.

These findings demonstrate that it is important to con-
figure CPS model generators to generate CPS models with
diverse distributions of bug-triggering blocks to effectively test
Simulink compiler.

D. Challenges

To configure program generators, there are two main ap-
proaches in the literature. Both of them are for general-purpose
compiler testing.

• Swarm testing [9], which generates diverse test programs
by randomizing generator configurations

• History-guided testing [8], which uses historical bug-
triggering programs to infer the range of each configu-
ration option. It then uses particle swarm optimization
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(PSO) to iteratively optimize the inferred range with
newly generated programs.

However, these approaches may not test Simulink compiler
effectively due to two challenges, i.e., the CPS model repre-
sentation challenge and the configuration learning challenge.

CPS model representation challenge. Programming lan-
guages supported by general-purpose compilers usually have
complete language specifications. For example, existing ap-
proaches use 71 configuration options in the C program gener-
ator Csmith as features to control the generated programs, such
as the probability to generate the const keyword and return
statements. However, most of these features are not supported
or controllable by CPS model generators. In addition, these
features only focus on local program characteristics. They
ignore global CPS model characteristics such as the size and
complexity of CPS models. Global characteristics reflect the
impact of a combination of different blocks, which are also
important for generating bug-triggering CPS models. The first
challenge is how to mine effective features to represent CPS
models for measuring their diversity.

Configuration learning challenge. Existing approaches rely
on a large number of historical programs to infer the range of
each configuration option. For example, history-guided testing
collects more than 4000 bug-triggering programs generated by
Csmith to guide the program generation. However, such histor-
ical knowledge is not available in Simulink compiler, because
the complete list of Simulink compiler bugs is not traceable in
the MathWorks’ bug reporting platform. Moreover, Simulink
compiler testing is more challenging. It is difficult to generate
thousands of bug-triggering CPS models by simply running
CPS model generators (e.g., SLforge). The second challenge
is how to learn configurations of CPS model generators to
generate CPS models with diverse features.

III. PRELIMINARY

Before illustrating our approach, we first briefly introduce
two basic machine learning techniques we rely on.

A. Reinforcement Learning

Reinforcement learning [18] is a class of machine learning
algorithms that take actions in an environment to maximize
the notion of cumulative return. There are four basic concepts
in reinforcement learning.

• State (S) is the state of environment. For example, in a
chess game, the state can be the current position of pieces
on the chess board.

• Action (A) is the operation conducted on the state, such
as moving one of the pieces in the chess board.

• Reward (R) is the immediate reward obtained after taking
actions on states (S×A → R). For example, if function f
represents the probability to win the chess game at state
st, the immediate reward rt = f(st+1) − f(s), where
st+1 = at(st) and at is the action on st.

• Cumulative return (G) is the overall reward for an action.

gt = rt + γrt+1 + · · · =
∞∑
k=0

γkrt+k, where γ is a factor

to discount the impact of an action on future rewards.

Reinforcement learning aims to train a model (without
needing labeled input/output pairs) to learn the cumulative
reward can be got when certain actions are made on the state
based on the “feedback” of the immediate reward. The model
is then used to predict the action that should be taken at a
state.

B. Double Deep Q-Network (DDQN)

DDQN [19] is one of the state-of-the-art algorithms for
training the reinforcement learning model. The kernel of
DDQN includes two deep neural networks with the same
architecture, denoted as Qϕ and TargetQ ϕ̂, where ϕ and ϕ̂
represent the parameters (i.e., weights of edges and nodes) of
the two networks. Qϕ is used to train and predict actions,
while TargetQ ϕ̂ rectifies Qϕ to reduce the fluctuations in
the training process. DDQN aims to optimize ϕ for Qϕ to
accurately predict the cumulative return of each action.

The execution of DDQN is iterative. Initially, ϕ is randomly
initialized, and ϕ̂ = ϕ. In each iteration t, based on the current
state st, the ε-greedy strategy [20] is used to select an action.

at =

{
random(A), p(ε)
argmaxQϕ(st, a), p(1− ε)

, (1)

where A presents all the actions that can be taken on st.
DDQN has a probability ε to randomly select an action and
a probability 1 − ε to decide actions by Qϕ. For the latter,
DDQN uses Qϕ to predict the cumulative reward obtained for
each action a ∈ A, and selects action at having the highest
predicted cumulative reward. When at is determined, DDQN
calculates the actual immediate reward rt for moving from
st to st+1 based on a predefined function f . DDQN uses an
experience pool P to save rt as a tuple ⟨st, at, st+1, rt⟩.

In each iteration, DDQN selects a subset of tuples in P to
optimize ϕ. Specifically, DDQN assumes that the cumulative
return is only affected by the recent two immediate rewards,
i.e., gt = rt + γrt+1. Given a tuple ⟨st, at, st+1, rt⟩, the loss
function for this tuple is

loss(ϕ) = (gt −Qϕ(st, at))
2, (2)

where Qϕ(st, at)) is the cumulative return predicted by Qϕ.
Here, gt is defined as:

gt = rt + γrt+1

= rt + γTargetQ ϕ̂(st+1, at+1),
(3)

where at+1 = argmaxQϕ(st+1, a). It means DDQN first uses
Qϕ to estimate the best action at+1 at state st+1. Then, at+1 is
fed to TargetQ ϕ̂ to estimate the immediate reward rt+1. Based
on the loss of each tuple, parameters ϕ for Qϕ are updated in
each iteration with gradient descent for better predicting gt.
Meanwhile, ϕ̂ in TargetQ ϕ̂ is updated for every C iterations
by copying parameters ϕ in Q to ϕ̂. Since TargetQ ϕ̂ is
updated less frequently than Q. TargetQ ϕ̂ can improve the
stability of the optimizing process without being affected by
the fluctuation in an iteration.
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Fig. 2. The framework of RECORD

IV. THE FRAMEWORK OF RECORD
In this section, we illustrate the framework of RECORD, a

Reinforcement lEarning based COnfiguRation Diversification
approach for Simulink compiler testing. We first provide an
overview of RECORD. We then explain the two main compo-
nents of RECORD, i.e., feature vectorization and configuration
learning.

A. Overview

The framework of RECORD is illustrated in Fig. 2.
RECORD aims to generate CPS models with diverse distribu-
tions of bug-triggering features by configuration diversification
of a CPS model generator. With diverse CPS models, larger
input space of Simulink compiler can be tested, which is
expected to trigger more Simulink compiler bugs. The inputs
of RECORD are a configuration file of a CPS model generator
(e.g., SLforge) and a group of CPS models generated by
a set of random option values (Step 0 ). In each iteration,
RECORD updates configurations and generates a group of
new CPS models (Step 1 ). These CPS models are fed into
the feature vectorization component, which vectorizes CPS
models into feature vectors based on a set of manually-
mined bug-triggering features (Step 2 ). By representing CPS
models as feature vectors, the CPS model representation
challenge is addressed. In the reinforcement learning compo-
nent, RECORD compares feature vectors between new CPS
models and previously generated CPS models. By comparison,
RECORD uses reinforcement learning to learn the rewards
(i.e., diversity) to be got when certain configuration updates
are made to address the configuration learning challenge (Step
3 ). Based on the learned knowledge, this component suggests

new configurations, which are expected to generate CPS
models with diverse distributions of bug-triggering features
(Step 4 ). At the end of each iteration, the newly generated
CPS models are used to test Simulink compiler by differential
testing (Step 5 ).

B. Feature Vectorization

In this component, RECORD represents a CPS model as
a feature vector for measuring the diversity of CPS models.
Table II presents the features used by RECORD, including the
category and sub-category of features, the number of features,
the description, the intuition to mine these features, and the

value type. We construct these features by analyzing the
semantics of blocks and the characteristics of bug-triggering
CPS models collected in Section II-C. The key insight is that
these features can reflect the capability of a CPS model to
trigger Simulink compiler bugs. RECORD could explore more
bug-prone space in Simulink compiler, if it generates CPS
models with diverse distributions of these features.

Features. We construct two categories of features, including
local features and global features. Local features capture the
characteristic of a single block, while global features analyze
blocks in a CPS model as a whole.

Specifically, as shown in Table II, we have four sub-
categories of local features, including features related to inputs
and outputs, ports and subsystems, datatypes, and operations.
In each sub-category, there are several features. Each feature
represents the frequency of a certain block in a CPS model. For
example, there are 38 features related to inputs and outputs,
which count the frequency of blocks such as Display, Clock,
Sine Wave, Constant, Scope, Terminator, and Outport in a
CPS model. We consider these blocks as features because they
frequently interact with the outside world. The uncertainty of
the outside world may explore some unexpected compilation
branches in Simulink compiler. RECORD attempts to gener-
ate CPS models with different distributions of these blocks
to thoroughly test Simulink compiler. The third and fourth
columns in Table II explain the details of each sub-category.
In total, we construct 113 local features.

Local features reflect the characteristics of certain blocks.
However, as discussed in Section II-C, the interactions of
blocks should be also considered when generating CPS mod-
els. To this end, we construct 4 sub-categories of global
features to capture the characteristics of a single CPS model
and a group of CPS models, including features related to the
size, the architecture, and the readability of a CPS model,
and the success rate for generating a group of CPS models.
For example, a CPS model with low readability could mean
that the CPS model has many subsystems and operations
on inputs and outputs data. In global features, we add a
feature Success rate to analyze the characteristic of a group
of CPS models. Since the success rate for generating CPS
models by a generator (e.g., SLforge) significantly changes
when the generated CPS models are complex (e.g., with many
blocks) [1], we vary the success rate to generate groups of CPS
models with different levels of complexity.
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TABLE II
FEATURES FOR CPS MODEL VECTORIZATION

Category Sub-category Description Intuition Value(# of Features)

Local

Inputs and out-
puts (38)

For a CPS model, we collect a subset of blocks in Sources
and Sinks libraries, such as Display, Clock, Scope, Record,
Terminator, Ramp, Ground, Step blocks. The frequency of
each block is a feature.

These blocks frequently interact with I/O data
(e.g., signal data) from/to the outside world. The
uncertainty of inputs/outputs may explore more
compilation branches.

Integer

Features

Ports and Sub-
systems (25)

For a CPS model, we collect a subset of blocks in the Ports
and Subsystems library, such as If, SwitchCase, Enable,
For Each Subsystem, Function-Call Generator, Trigger,
Switch Case, Subsystem blocks. The frequency of each
block is a feature.

CPS models with subsystems are usually more
complex. They have a higher chance to trigger
Simulink compiler bugs.

Integer

Datatypes (14) For a CPS model, we collect a subset of blocks in the
Signal Attributes library, such as Data Type Conversion,
Bus to Vector, IC, Unit Conversion, Width, Rate Transi-
tion, Data Type Duplicate blocks. The frequency of each
block is a feature.

Data type conversion in CPS models is error-prone,
which could throw exceptions such as data type
mismatch. Simulink compiler may not correctly
handle these problematic blocks.

Integer

Operations (36) For a CPS model, we collect a subset of blocks in the Math
Operations library, such as Add, MinMax, Gain, Product,
Reshape, Sqrt, Dot Product, CompareToZero blocks. The
frequency of each block is a feature.

Blocks in this category can lead to complex math
operations in CPS models. When optimizing these
operations with Simulink compiler, bugs could
occur.

Integer

Global

Size (5) We calculate the size of a CPS model based on (a) the
number of inputs and outputs in the CPS model; (b) the
number of blocks in the CPS model; (c) the number of
lines in the CPS model; (d) the number of subsystems in
the CPS model; (e) the depth of the hierachical children
of the CPS model. We take each number as a feature.

Larger CPS models usually have more block inter-
actions, which increase the difficulty for Simulink
compiler to optimize.

Integer

Features Architecture (1) We calculate the cyclomatic complexity of a CPS model. Different CPS model architectures may trigger dif-
ferent optimization bugs in Simulink compiler.

Integer

Readability (1) We calculate the degree of data and structure layer sepa-
ration.

The coupling of data and structure increases the
difficulty to analyze CPS models by Simulink
compiler.

Integer

Success rate (1) We collect CPS models generated by the CPS model
generator in each iteration. We calculate the success rate
of the generator.

The success rate can reflect the complexity of a
group of CPS models.

Double

Vectorization. After feature construction, RECORD repre-
sents each CPS model as a feature vector, which is used to
guide the generation of CPS model groups with diverse feature
distributions. These CPS models could test the input space of
Simulink compiler thoroughly.

In this study, we use M = {m1,m2, . . . ,mi, . . . ,mn} to
represent a group of CPS models generated by a CPS model
generator with a certain combination of configuration option
values, where n is the number of CPS models in the group, and
mi is the ith CPS model. The corresponding feature vectors
of M are represented as V = {v1, v2, . . . , vi, . . . , vn}. We
define vi as the feature vector of the ith CPS model: vi =
[xi1 xi2 . . . xij . . . xir], where r is the number of features and
xij is the value of the jth feature. All the values in vi are
normalized by min-max normalization. Specifically, we use
xij

∗ to represent the original value (e.g., the frequency of a
block) of xij , where 1 ≤ i ≤ n and 1 ≤ j ≤ r. We normalize
value xij

∗ in feature vector vi as:

xij =

xij
∗ − min

1≤i≤n
(xij

∗)

max
1≤i≤n

(xij
∗)− min

1≤i≤n
(xij

∗)
(4)

The feature vectorization component of RECORD addresses
the CPS model representation challenge for Simulink compiler
testing by representing CPS models as a group of feature
vectors.

C. Configuration Learning

The reinforcement learning component learns the relation-
ship between the configurations of a CPS model generator
and the generated CPS models. This component aims to
generate diverse CPS models by altering configurations. Since
we represent CPS models as a group of feature vectors,
we define diversity as the distance between different feature
vector groups. Given two groups of CPS models M1 and
M2, their feature vectors are V1 and V2, respectively. The
center of a feature vector group V = {v1, v2 . . . vi . . . vn} can
be represented as Center(V ) = [xc

1 xc
2 . . . x

c
j . . . x

c
r], where

xc
j = (

∑
1≤i≤n xij)/n is the mean of the jth feature in

V . We follow the previous study [8] to define the distance
of two CPS model groups as the Manhattan Distance of
the centers of two feature vector groups: d(M1,M2) =
d(Center(V1),Center(V2)) =

∑j=r
j=1 |x

c1
j − xc2

j |.
Hence, the goal of RECORD is to configure a CPS model

generator to generate new CPS model groups, which have a
large distance from previously generated CPS model groups.

In this study, we generate diverse CPS model groups by
reinforcement learning [18]. The basic idea of RECORD is
that RECORD takes the distance between two CPS model
groups as a reward. In each iteration, RECORD uses reinforce-
ment learning (i.e., double deep Q-network (DDQN) [19] in
this study) to learn the cumulative rewards can be got when
certain actions (i.e., changes) are made on configurations, with
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Algorithm 1 The Reinforcement Learning Component
Input: Configuration options O of a CPS model generator,
Parameters ϕ of the DDQN network Qϕ,
Action set on configurations A,
Number of episode Nep and number of iterations Niter ,
Threshold th for minimum ratio of valid CPS models.
Probability ε for the ε-greedy strategy.
Output: Set of generated CPS models M;

1: M = ∅;
2: Initialize an experience pool P = ∅;
3: for episode = 1 : Nep do
4: Randomly initialize ϕ for Qϕ;
5: Randomly initialize configuration options O;
6: Generate CPS model group M1 with O;
7: M = M∪M1;
8: Compute feature vectors V1 for M1;
9: Initialize a feature vector group set V = {V1};

10: for t = 1 : Niter do
11: Select action at = ε(Qϕ(Vt, A));
12: Update configuration option O = at(O);
13: Generate CPS model group Mt+1 with new O;
14: Compute feature vectors Vt+1 for Mt+1;
15: Compute reward rt with Vt+1 and V;
16: Add tuple ⟨Vt, at, Vt+1, rt⟩ into P ;
17: Randomly select a subset of tuple P ′ ∈ P ;
18: Update network Qϕ = train(Qϕ, P

′, t);
19: V = V ∪ Vt+1, M = M∪Mt+1;
20: if RatioOfValid(Mt+1) < th then
21: break;
22: end if
23: end for
24: end for

the generated CPS model groups in previous iterations and
the corresponding rewards. With this knowledge, RECORD
intelligently updates the configurations in each iteration to
generate new CPS models that expect to obtain a high cu-
mulative reward. Compared with swarm testing and history-
guided testing, RECORD can learn to generate diverse CPS
models without the knowledge of bug-triggering CPS models
in history.

Based on the explanation of reinforcement learning in
Section III, in this study we have:

• State is the values of configuration options. Given an
option value combination, we can generate a group of
CPS models M and calculate their feature vectors V ;

• Action is the operation on configuration options (e.g.,
adding 0.02 to the value of a configuration option);

• Reward is the minimal distance between the newly
generated CPS model group Mt+1 and previously gen-
erated CPS model groups M1, . . . ,Mt, i.e., rt =
min
1≤i≤t

(d(Mi,Mt+1));

• Cumulative return is gt = rt + γrt+1;

RECORD aims to update configurations to maximize gt.
The pseudo-code of this component is depicted in Algo-

rithm 1. Initially, RECORD initializes a set M to save the

generated CPS models and an experience pool P (lines 1–
2). RECORD conducts iteration for Nep episodes. In each
episode, RECORD randomly initializes the network Qϕ

(line 4) and the configurations of the CPS model generator
O (line 5). RECORD generates a group of CPS models with
the initial configurations, and adds the corresponding feature
vectors V1 to a set V (lines 6–9).

After initialization, RECORD iteratively generates CPS
models. In each iteration t, RECORD decides the actions on
configuration options O based on the network Qϕ (line 11.
We define three actions A on an option, including adding
0.02 to the value, reducing 0.02 on the value, and keeping the
value unchanged. RECORD uses the ε-greedy strategy (Eq. 1)
to select an action. Specifically, RECORD generates all the
action combinations on all configuration options. Then, the
network Qϕ is used to predict the cumulative reward for each
action combination based on Vt. RECORD selects the action
combination at which has the highest predicted cumulative
reward. When at is decided, RECORD updates configurations
in line 12.

With new configurations, a new group of CPS models Mt+1

is generated (line 13). RECORD calculates the immediate
reward rt (i.e., diversity) obtained by actions at based on the
feature vectors of Mt+1 and groups of previously generated
CPS models (saved in V) (lines 14–15). We take rt as
“experience”, which reflects the actual immediate reward to be
got when feature vectors change from Vt to Vt+1 by actions at.
We save this experience as a tuple in P (line 16). In each iter-
ation, we randomly select a subset of “experience” to update
parameters ϕ of the network Qϕ using the standard DDQN
optimization process explained in Section III-B (lines 17–18).
Hence, RECORD can continuously improve its configuration
learning ability as P increases in each iteration and episode.

RECORD saves the group of newly generated CPS models
and their feature vectors in M and V respectively, where M
is used for compiler testing and V is used for calculating
the immediate reward in the next iteration. RECORD has
two termination conditions to avoid repeatedly exploring local
configuration space. When the number of iterations reaches
Niter or the ratio of valid CPS models in Mt+1 is lower than
a threshold th (line 20), we re-initialize RECORD for the next
episode of iterations.

The output of configuration learning is the CPS models
generated in each iteration for Simulink compiler testing.
These CPS models are generated under the consideration of
CPS model diversity.

V. EVALUATION

In this section, we assess the effectiveness of RECORD for
Simulink compiler testing. We first assess the bug-finding ca-
pability of the generated CPS models by RECORD compared
against the state-of-the-art approaches. We then take the CPS
models generated by RECORD as seeds to assess the ability
of RECORD to facilitate different Simulink compiler testing
strategies. At last, we analyze the impact of our configuration
learning strategy on generating diverse CPS models.

Specifically, we aim to answer the following Research
Questions (RQs).



IEEE TRANSACTIONS ON RELIABILITY 8

RQ1 How is the bug-finding capability of RECORD compared
to the state-of-the-art approaches?

RQ2 Can we use the CPS models generated by RECORD as
seeds to facilitate the EMI-based testing strategy?

RQ3 What is the impact of the reinforcement learning com-
ponent on the diversity of generated CPS models?

A. Baselines

We generate CPS models based on the CPS model gener-
ator SLforge [1], since it is the state-of-the-art generator for
Simulink compiler testing. We consider three baselines:

• Default [1]. SLforge has default configurations suggested
in the configuration file. This approach uses the default
configurations to generate CPS models for testing.

• Swarm [9]. We use swarm testing to randomize the
configurations of SLforge. In each iteration, a new set of
random configurations is used to generate CPS models.

• History [8]. Chen et al. propose a history-guided testing
approach, which uses PSO to optimize configurations
of a generator based on the knowledge of historical
bug-triggering programs. However, as explained in Sec-
tion II-D, it is not feasible to infer the possible range of
each configuration option with the historical knowledge
for Simulink compiler. For this baseline, we only use
PSO to optimize the configurations and generate a group
of new CPS models in each iteration.

B. Testing Strategy

We run each approach for a given period of time. In
each iteration, RECORD and baselines update the values of
configuration options, which are used by SLforge to generate
a group of new CPS models. We compile these CPS models
with Simulink compiler, and find compiler bugs by differential
testing. Specifically, we follow previous studies [1], [2] to
compile each CPS model in both Normal and Accelerator
simulation modes of Simulink compiler, where the former
is the default simulation mode and the latter speeds up
simulation by emitting native code. The two simulation modes
are expected to obtain the same outputs. If the outputs are
different, a Simulink compiler bug could be found.

When a possible bug is found, we compare the failed
assertion and back-trace of this bug with the bugs found in
previous iterations. We consider two bugs as duplicate bugs,
if their failed assertions and back-traces are the same. After
removing duplicate bugs, we conduct CPS model reduction.
We remove blocks in the CPS model one by one, until a
minimum bug-triggering CPS model is found. We submit
each bug as a bug report to the MathWorks’ bug reporting
platform [17]. In the bug report, we present the symptom of
the bug and the reduced CPS model that triggers the bug. The
MathWorks support team provides two types of feedback for
each bug, including new and known. New means the reported
bug is a new one in Simulink compiler. Known means there
is a duplicate bug in their repository with the reported bug.
Since the complete bug list is not available in the MathWorks’
bug reporting platform, we have published all the bugs found
by RECORD in the replication package [10].

C. Implementation and Settings

We implement RECORD as a Matlab program. The rein-
forcement learning model DDQN is implemented with the
Matlab Reinforcement Learning Toolbox [21].

As explained in Section II-A, SLforge has several config-
uration options, which sets the probability to generate blocks
in a library, the structure of CPS models, and the execution
strategy. In this study, we focus on optimizing seven default
options related to block generation probability, including the
probability to generate blocks in Discrete, Math Operations,
Ports and Subsystems1, Sinks, and Sources2 [1] libraries, since
they are the main options to affect the distribution of blocks
in a CPS model. For other options, we use the default values
in SLforge. For example, the hierarchy level is between 1 and
5, the number of blocks in a CPS model is between 30 and
100, and the timeout is 300 seconds. SLforge suggests these
values because the time to generate a CPS model significantly
increases as the hierarchy level and the number of blocks
increase, leading to a frequent timeout. In each iteration, we
generate 100 CPS models (i.e., the default value). All valid
CPS models are used for differential testing.

For the reinforcement learning component, we set the num-
ber of iterations Niter = 10 and the threshold th = 0.10.
These two parameters are set empirically by running RECORD
to test Simulink compiler for one week. Probability ε is
set to ε = power(0.1, ⌈episode/4⌉) according to existing
studies [19]. This setting means that As the number of episodes
increases, the value of ε (i.e., the probability to randomly
select configurations) is decreasing, since RECORD has more
experience in the experience pool to train the model for
selecting actions. The discount factor γ for calculating the
cumulative return is 0.9 [21]. The number of episodes Nep is
set dynamically according to the testing period.

We performed our experiments with computers running
Windows 10 64-bit system with a 2.10 GHz Intel(R) Xeon(R)
Silver 4166 processor and 128 GB of memory. The source
code of RECORD and experiment results are available in our
replication package [10].

D. Comparison with Baselines (RQ1)

In this RQ, we assess the effectiveness of RECORD com-
pared to the baselines for finding Simulink compiler bugs.

1) Methodology: We run each approach with an evaluation
period of three months, including the time to generate CPS
models and conduct differential testing. The evaluation period
is comparable with the previous study [1]. We choose the latest
Simulink version when initializing this study for testing, i.e.,
Simulink R2021b. We choose this version because developers
confirm and fix bugs primarily in the latest version [22].
These bugs are usually new and more important to developers
since many known bugs have been fixed. In addition, after
communicating with developers, they also suggested running
CPS models on the new Simulink version. To accelerate the

1There are two options to separately control the probability to generate
blocks related to Subsystem and If in this library.

2There are two options control the probability to generate Constant blocks
and other blocks.
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TABLE III
NUMBER OF BUGS FOUND BY RECORD AND BASELINES

New Known Total

Default 1 0 1
Swarm 2 0 2
History 3 0 3

RECORD 9 2 11

Fig. 3. Relationship of bugs found by different approaches

testing process, we follow the previous study [22] to test
Simulink compiler in parallel. We use two computers with
the same hardware configurations to run RECORD and the
three baselines. The whole experiment took about six months.

We reproduce SLforge (Default), swarm testing (Swarm),
and history-guided testing (History) based on the publicly
available source code provided in previous studies [8], [1]. We
have cross-reviewed the implementation and made necessary
modifications (e.g., skipping the knowledge on bug-triggering
programs used by History) for baselines.

2) Result: Table III shows the number of bugs found
by RECORD and baselines. RECORD finds 11 confirmed
bugs during the testing period, of which 9 bugs are new
to developers and 2 bugs are labeled as known. Although
Simulink is usually fully tested before release, RECORD can
still find new bugs. Since Simulink is widely used for safety-
critical applications [4], [5], [6], [7], finding these bugs is
important to developers. RECORD significantly outperforms
Default, Swarm, and History, which find 1, 2, and 3 bugs in
this testing period, respectively.

The results obtained by different approaches can be ex-
plained in two folds. On the one hand, existing studies show
that approaches such as SLforge found 8 bugs in five months
on several Simulink versions from 2015a to 2017a [1]. How-
ever, most of the bugs could have been fixed in the latest ver-
sions. SLforge uses the same configurations to test Simulink
compiler. The bug-finding capability tends to be saturated. On
the other hand, although Swarm and History perform better
than SLforge by changing configurations, the random and PSO
strategies may not efficiently generate diverse CPS models for
testing. In contrast, RECORD continuously learns the rewards
obtained when updating different configuration options. With
this knowledge, RECORD can explore more input space of
Simulink compiler, which leads to a higher probability to
trigger different Simulink compiler optimization bugs.

Fig. 4. TSC05290681: Inconsistent data in different simulation modes

Fig. 5. TSC05313680: Min module mishandling NaN and 0 values

Fig. 3 shows the relationship of bugs found by different
approaches. Since these approaches are built on top of the
same CPS model generator, there is an overlap between the
bugs found by different approaches. In particular, bugs found
by RECORD are a super set of the other three approaches. It
means RECORD can efficiently generate diverse CPS models
to test Simulink compiler.

We list the detail of bugs found by RECORD in Table IV,
including the ID (i.e., the Technical Support Case (TSC) ID),
the title of the TSC, and the feedback from developers (FB).
All bugs have been confirmed. RECORD finds Simulink com-
piler bugs related to data loss errors, math calculation errors,
subsystem errors, prompt errors, and others. We classify these
bugs based on their symptoms and the communication with
developers. Here, we present some examples of (reduced) bug-
triggering CPS models generated by RECORD. The original
CPS models can be found in the replication package [10].

Data loss error: We find a bug (i.e., TSC05290681) related
to the inconsistent outputs of the Max block in the Normal and
Accelerator simulation modes. The CPS model is presented
in Fig. 4. After debugging, the problem is that the Max block
loses the signal data at the 7th second when optimizing the
CPS model in the Accelerator simulation mode. Developers
have reproduced this bug with the submitted CPS model.
TSC05290678 is a duplicate bug of TSC05290681. The two
bugs are being analyzed together by developers.

Math calculation error: Simulink compiler has a few bugs
when optimizing math operations. The first type of bug is
related to optimizing the boundary conditions of blocks. A
typical example is TSC05313680. As shown in Fig. 5, in
this CPS model, the Min block incorrectly compares the input
values. When the inputs are NaN, 0, and -4.19e+8, the CPS
model outputs -4.19e+8 in the Normal simulation model, while
the output is NaN in the Accelerator simulation model. The
reason is that Simulink compiler has problems to compare a
negative value with NaN in the Accelerator simulation model.
This type of bug is also found in Max (TSC05313899) and
Sum (TSC05309988) blocks. Developers labeled each of these
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TABLE IV
THE DETAIL OF BUGS FOUND BY RECORD

# ID Title FB Fixed

1 05246986 Data exceptions caused by different simulation operations N Y
2 05290678 Data loss and inconsistency in different simulation modes K Y
3 05290681 Inconsistent data in different simulation modes N Y
4 05309988 In accelerated simulation, abnormal data occurs in sum module N Y
5 05313680 MIN module mishandling nan and 0 values N Y
6 05313899 Max module acceleration simulation exception N Y
7 05372237 Unreasonable compilation error prompt N N
8 05385316 Model JIT accelerated simulation generate file failed N Y
9 05385318 UnitDelay module accelerator data exception in the if subsystem N Y

10 05405363 Models with if-action subsystems don’t compile in accelerator N Y
11 05474416 Compilation fails due to zero-crossing detection in accelerator K Y

bugs as a new one. The second type is related to zero-crossing
detection. We find the simulation of a CPS model could be
terminated in the Accelerator simulation model due to the
zero-crossing detection of the MinMax block. An instance of
this bug is TSC05474416. Developers explained that they will
fix this bug in the future Simulink version.

Subsystem error: Subsystems increase the complexity of
CPS models. We find several bugs in Simulink compiler for
subsystem optimization. For example, Fig. 6 is a CPS model
with an if block (ID:cfblk114). When the if block is active, the
dot block (ID:cfblk4) in the subsystem produces inconsistent
results in different simulation modes. After debugging, we find
that Simulink compiler generates a lot of unexpected code
around the dot block in the Accelerator simulation mode. The
code cannot be linked to any behaviors depicted in the CPS
model. The bug has been forwarded to developers for further
investigation. We have found several other bugs related to
subsystems, such as TSC05385318 and TSC05405363

Wrong prompt: Simulink compiler can show inconsistent
prompts during compilation. When we compile the CPS model
in Fig. 7 in the Accelerator simulation mode, Simulink com-
piler shows a warning about “the datatype (unit32) passed to
the PID block is not supported”. However, we find the PID
block can accept the datatype unit32. Developers suggested a
temporal solution to add a Data Type Converter block in the
CPS model. They created a request to improve the prompt.

Others: We label a bug as others because developers are
still analyzing the root causes. For example, a CPS model3

generated by RECORD reports an error “code generation as-
sertion ‘tidIdx < getNumTs()’ failed in ...” in the Accelerator
simulation mode (in Fig. 8). However, the CPS model can be
compiled in the Normal simulation mode. Developers have
confirmed the bug. They created a request to analyze the
reason.

3) Importance of Bugs: We discuss the importance of the
bugs by analyzing the type of reported bugs and the ratio of
confirmed/fixed bugs. First, in the official bug reporting plat-
form, developers classify bugs into four categories: security,
incorrect code generation, assistive functionality issues, and
others. For the bugs found by RECORD, most of them belong
to incorrect code generation, which is listed by developers

3The reduced CPS model is too large to present. It is available in the
replication package.

as an independent and main type of bugs in the platform.
Such bugs can lead to incorrect simulation results that are
different from the actual behavior of the designed CPS. In
safety-critical domains such as medicine or aerospace, these
bugs could inject unexpected behaviors into a CPS model,
which heavily threaten the correctness and safety of target
CPS applications.

Second, most of our reported bugs have been confirmed
and fixed by developers. As shown in Table IV, nine of
the reported bugs are confirmed as ‘new’ by developers. We
determined whether a bug is fixed or not in two ways, i.e.,
the communication with developers and the replicability in a
newer Simulink version. On the one hand, developers send us
emails to confirm the resolution of a bug. On the other hand,
we execute each bug-triggering CPS model on a newer version
of Simulink. If the bug cannot be reproduced, it usually means
that developers have fixed this bug. As shown in Table IV, the
last column “Fixed” indicates whether a bug has been fixed
(“Y”) or not (“N”). For the reported bugs, ten of them have
been fixed by developers, which illustrates the importance of
these bugs (as it often takes substantial effort to fix a bug [35]).

Answer to RQ1: RECORD significantly outperforms the
baselines in terms of the bug-finding capability. RECORD finds
11 bugs in the testing period.

E. Effectiveness of RECORD for EMI-based Testing (RQ2)

CPS models are the elementary inputs for Simulink com-
piler testing. In addition to finding bugs directly with the
generated CPS models using differential testing, these CPS
models are also important inputs for mutation-based compiler
testing strategies (e.g., EMI-based testing). RQ2 assesses the
effectiveness of the generated CPS models by RECORD for
EMI-based Simulink compiler testing.

1) Methodology: In the literature, SLEMI [2] is the
state-of-the-art EMI-based Simulink compiler testing strategy.
SLEMI takes CPS models generated by a generator as seeds.
SLEMI supports four mutation strategies on seed CPS mod-
els [2], including (1) randomly deleting blocks in zombie
regions (i.e., blocks in unexecuted regions), (2) replacing
zombie regions with Saturation blocks, (3) promoting blocks
to their child model (as a subsystem), (4) and randomly
creating a new signal path terminated by a sink block (which
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Fig. 6. TSC05246986: Data exceptions caused by different simulation operations

Fig. 7. TSC05372237: Unreasonable compilation error prompt

Fig. 8. TSC05385316: Model JIT accelerated simulation generate file failed

has no output data). Then, the seed CPS model and its variants
are executed in the same Simulink setting to detect compiler
bugs. In this RQ, we create four instances of SLEMI, includ-
ing SLEMI(Default), SLEMI(Swarm), SLEMI(History), and
SLEMI(RECORD). Each instance represents running SLEMI
with CPS models generated by RECORD or one of the
baselines. We run each SLEMI instance for two weeks due
to the huge time cost. In each iteration, we first use RECORD
or the baselines to generate 100 CPS models, which is the
same setting as in RQ1. We then feed these CPS models into
SLEMI for mutation. We use Simulink compiler to compile the
seed CPS model and its variants in the same simulation mode.
Specifically, we first compare the outputs of these CPS models
in the Normal simulation mode. We then compile and compare
them in the Accelerator simulation mode. If the outputs (i.e.,
output values or prompts) are different in any simulation mode
for any two CPS models, a bug could be found. We run SLEMI
with the source code provided in their study using default

TABLE V
NUMBER OF BUGS FOUND BY DIFFERENT APPROACHES + SLEMI

Approach # of bugs

SLEMI(Default) 1
SLEMI(Swarm) 0
SLEMI(Hisotry) 2

SLEMI(RECORD) 4

parameters. For example, SLEMI generates 5 variants for each
seed CPS model.

2) Result: As shown in Table V, SLEMI can find Simulink
compiler bugs based on the CPS models generated by differ-
ent CPS model generation approaches. However, CPS model
generation approaches also influence the bug-finding capa-
bility of the EMI-based strategy. When we apply SLEMI
on the CPS models generated by RECORD, four bugs are
found in Simulink compiler. In contrast, SLEMI(Default),
SLEMI(Swarm), and SLEMI(History) find 1, 0, and 2 bugs,
respectively.

The reason is that SLEMI conducts mutation based on the
structure of CPS models (e.g., zombie regions and subsys-
tems). Compared with the other three approaches, RECORD
can generate diverse CPS models with different structures.
Although the number of CPS models generated by RECORD
is smaller than the other approaches due to the time cost
for configuration learning, the diversity of CPS models could
potentially help SLEMI explore equivalent mutations in more
Simulink compiler input space. As a result, more bugs are
found by SLEMI(RECORD).

Answer to RQ2: RECORD facilitates the EMI-based strat-
egy to find more bugs compared to baselines.
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Fig. 9. Distribution of blocks in CPS models generated by RECORD

F. Impact of Configuration Learning (RQ3)

The reinforcement learning component in RECORD learns
the relationship between configuration changes and rewards,
which is then used to guide generating diverse CPS models.
In this RQ, we analyze the distribution of blocks in different
libraries generated by RECORD in each iteration to investigate
the impact of the reinforcement learning component.

1) Methodology: We run RECORD to generate CPS mod-
els with different configurations for one episode. In each
iteration, we collect a group of CPS models generated by
RECORD, and compute the ratio of blocks in each library
in these CPS models. Since SLforge only supports a subset of
CPS model libraries [1], we mainly analyze the ratio of blocks
related to Discrete, Math Operations, Ports and Subsystems,
Sinks, and Sources libraries in this RQ.

2) Result: As shown in Fig. 1, RECORD attempts to
generate CPS models with different block distributions. For
example, initially the ratio of Sinks blocks is 0.19. During
configuration learning, RECORD increases the probability to
generate Sinks blocks to 0.27 to explore more input space of
Sinks blocks. However, after a few iterations, RECORD finds
the reward to add more Sinks blocks is decreasing. RECORD
then configures the generator to reduce the probability to
generate Sinks blocks. As a result, the ratio of Sinks blocks
is down to around 0.22. We can observe similar increasing-
decreasing (or opposite) trends for blocks in other libraries.
For example, in this experiment, RECORD tends to generate
CPS models with fewer Ports and Subsystems blocks at first.
Since this may lead to simple CPS models with lower diversity,
RECORD increases the ratio of Ports and Subsystems blocks
to increase the complexity of CPS models. In this way,
RECORD may have a higher probability to generate complex
CPS models to trigger more Simulink compiler bugs.

According to the above observations, RECORD explores the
input space of Simulink compiler by dynamically adjusting the
distribution of different blocks. In this way, RECORD could
efficiently explore the input space without generating too many
“useless” CPS models, such as a CPS model with only a large
number of Sinks blocks.

Answer to RQ3: The reinforcement learning component
improves the ability of RECORD to generate CPS models with
diverse distributions of blocks.

Fig. 10. Time distribution of executing RECORD (hours)

VI. DISCUSSION

A. Efficiency

We spend a long evaluation period to test Simulink compiler.
The time consumption of RECORD mainly consists of three
parts, namely the time to generate valid CPS models, the time
of CPS model compilation and simulation, and the time of
feature vectorization and configuration learning. The pie chart
in Fig. 10 shows the time distribution of each part. This time
distribution is computed by running RECORD to generate
100 CPS models with different configurations. In the figure,
valid CPS model generation takes the majority of time in the
experiment, followed by the time of CPS model compilation
and simulation.

The distribution of time in Fig. 10 can be understood as
follows. First, we use SLforge to generate CPS models as
inputs. The time to generate valid CPS models significantly
increases as the complexity of CPS models. In our context,
SLforge usually took 100–300 seconds to generate a CPS
model with 1–5 hierarchy levels and 30–100 blocks. It may
also reach the timeout threshold for generating some complex
CPS models. Second, the execution of CPS models takes time.
In the compilation phase, Simulink could take more than 10
seconds to compile a CPS model. In the simulation phase,
since CPS models simulate the behaviors of the CPS, Simulink
usually executes CPS models for a continuous period of time.
For example, in Fig. 5 the input of the cfblk60 block is a
signal. We cannot execute this CPS model only once. The
default configuration of this block is to run the CPS model
for 10 seconds, and sample the signal every 0.1 seconds.

Hence, the bottleneck that affects the efficiency of Simulink
testing is primarily the valid CPS model generation process.
When the CPS model generator generates CPS models, it
needs to search for available blocks and connections based on
the semi-formal specification of CPS models. If the generation
fails, the generator needs to fix the errors through multiple at-
tempts. This issue is also discussed in the paper of SLforge [1].

Since RECORD can find bugs automatically without hu-
man intervention, the efficiency is not a main limitation of
RECORD. To improve the testing efficiency, on the one
hand, parallel computing can be used to speed up the testing
process. For example, in the CPS model generation phase, we
can generate multiple CPS models with different CPS model
generator instances using a cluster of machines instead of two
computers to find more bugs. The CPS model compilation and
simulation can also be executed on a cluster of machines. On
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the other hand, we can try simpler but efficient techniques for
configuration learning (such as Default, Swarm, and History).
However, the bug-finding capability of these techniques is not
as effective as RECORD.

B. Choice of DDQN

We choose DDQN because, compared to DQN and other
non-model methods of reinforcement learning, DDQN theo-
retically combines the advantages of these models, which ad-
dresses the problem of overestimation in the value estimation
in DQN caused by data correlation. This advantage has been
verified in existing studies [19]. In our preliminary analysis,
besides DDQN, we tried typical reinforcement learning ap-
proaches with Matlab Reinforcement Learning Toolbox (e.g.,
Q-Learning). DDQN shows its better effectiveness. Hence, we
use DDQN to adjust the configuration of CPS model generator
to produce more diverse CPS models, thus facilitating the
exploration of the bug space of Simulink compiler. Our
experiment in Section V-F also demonstrates the effectiveness
of DDQN.

As for the limitation of DDQN, DDQN is a typical learning-
based approach, which requires data to iteratively learn the
configurations to generate diverse and useful CPS models.
Hence, at the first few rounds of iteration, DDQN usually
randomly explores the configuration space due to the insuffi-
cient knowledge being learned, which leads to inefficient bug-
triggering CPS model generation. However, as more feedbacks
obtained by DDQN (i.e., the diversity of CPS models gener-
ated with different configurations), DDQN could better learn
the strategy to generate diverse CPS models; hence more bug-
triggering CPS models are generated.

C. Threats to validity

1) Internal threats: As a common threat for compiler
testing, the effectiveness of RECORD depends on the func-
tionality of CPS model generators (i.e., SLforge in this study).
Since SLforge supports a subset of CPS modeling language
specifications, RECORD can only diversify CPS models for
blocks in certain libraries. However, blocks supported by
SLforge are the most-used blocks in CPS models [1]. Using
these language specifications, RECORD has identified several
confirmed bugs in Simulink compiler.

In this study, RECORD outperforms baselines in terms
of the bug-finding capability. However, as fuzzing testing
approaches, the randomly generated configurations by swarm
testing also have chances to find bugs detected by RECORD
when it is executed for enough testing period. Since devel-
opers usually have limited time for software delivery, such
approaches may not be feasible.

2) External threats: RECORD can trigger duplicate bugs,
which could affect the comparison of different approaches. To
alleviate this threat, we identify duplicate bugs by comparing
their failed assertions and back-traces. Further, we submitted
the detected bugs to developers for investigation. However,
these duplicate bugs also mean that bugs found by RECORD
are reproducible. RECORD can trigger a Simulink compiler
bug with different CPS models.

Another threat is the generality of RECORD. In this study,
we test the latest Simulink version. Similar to previous stud-
ies [3], [1], [2], we test Simulink because Simulink has
become an industrial standard widely used for many safety-
critical applications. We test the latest Simulink version, since
developers confirm and fix bugs primarily in this version [22].
This version has been tested based on the latest test suite
before release, which is more challenging to test. In our
preliminary study, RECORD can also trigger bugs in other
Simulink versions. However, developers suggest finding and
de-duplicating bugs in new Simulink versions. To apply
RECORD on other CPS tool chains or other types of compil-
ers, the main changes are to redesign the features in Table II.
In this study, we construct features based on the characteristics
of CPS models (e.g., ports and subsystems, operations). To test
other compilers, these features need to be adapted according
to the language specification of the target compiler. However,
the framework of reinforcement learning based configuration
diversification proposed by RECORD is not limited by certain
features.

VII. RELATED WORK

The section discusses the related work on testing Simulink
compiler and general-purpose compilers.

A. CPS Tool Chain Testing

A complementary line of work analyzes and looks for
bugs in different components of CPS tool chains. Chowdhury
et al. discuss the differential testing framework for testing
arbitrary CPS tool chain [23]. Sampath et al. test CPS model-
processing tools using semantic Stateflow meta-models [24].
Fehér et al. model the data-type inferencing logic of Simulink
blocks for reasoning and experimental purposes [25]. Stürmer
et al. test optimization rules of code generators utilizing graph
grammars [26], [27].

Our work is related to testing the compilation system of
CPS development tools. In this area, most of the works
focus on Simulink compiler testing. Since CPS models are
the basic inputs for Simulink compiler testing, Chowdhury et
al. [3] propose CyFuzz for CPS model generation. CyFuzz
randomly generates an initial CPS model and iteratively fixes
its complication errors. To accelerate the generation process,
SLforge [1] is proposed which generates CPS models based
on the guidance of the specifications of the CPS modeling
language. Since the formal specifications are neither complete
nor publicly-available, DeepFuzzSL [28] and SLGPT [29] are
proposed, which respectively use deep learning and transfer
learning to automatically learn the relationship of block con-
nections from existing CPS models to guide the generation.
According to previous studies [1], [28], [29], SLfroge is the
state-of-the-art CPS model generator in terms of the bug-
finding capability and efficiency.

CPS models generated by CPS model generators can also
be used as seeds for other testing strategies. SLEMI [2]
is the first EMI-based Simulink compiler testing approach,
which systematically mutates a seed CPS model as long as
its semantics remain equivalent under a given input. The
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seed CPS model and its equivalent variants are used to find
Simulink compiler bugs.

Our work is different from these studies. On the one hand,
we test Simulink compiler by guiding CPS model generators
to generate diverse CPS models with different distributions
of blocks. These CPS models can explore more input space
of Simulink compiler to trigger bugs. On the other hand,
RECORD facilitates the EMI-based strategy to find more bugs
compared to other CPS model generation approaches.

Another line of work enables the CPS model testing for
CPS tool chains. They mainly test CPS models fed into
CPS tool chains. For example, MathWorks’s Simulink Design
Verifier [30] is an official tool from MathWorks, that uses static
analysis to identify design errors in Simulink models. It can
find CPS model errors such as array access violations, division
by zero static, integer overflow, and static nested zombie
blocks. DSVerifier [31] applies symbolic model checking to
find design errors of CPS models. Nguyen et al. present a
runtime verification framework for CPS model analysis [32].
These works test the correctness of CPS models, instead of
CPS tool chain itself, which are different from our work.

B. General-purpose Compiler Testing

There are many works to test general-purpose compilers,
such as GCC and LLVM. RECORD has a similar testing
objective with swarm testing and history-guided testing [8],
[9], which test GCC and LLVM by changing configurations
of the C program generator Csmith. As discussed in Sec-
tion II-D, there are two challenges to apply these approaches
for Simulink compiler testing (i.e., the CPS model repre-
sentation challenge and the configuration learning challenge).
Experiments show that RECORD significantly outperforms
these approaches in terms of the bug-finding capability on
Simulink compiler.

Existing general-purpose compiler testing approaches can
be classified into three categories, including, Randomized Dif-
ferential Testing (RDT), Different Optimization Levels (DOL),
and Equivalence Modulo Inputs (EMI) [33], [34], [35], [36],
[37]. All these approaches are branches of differential testing.
RDT detects compiler bugs by comparing the outputs of dif-
ferent compilers with the same specification. DOL compares
the outputs produced by the same compiler with different
optimization levels. EMI maintains the equivalent setting by
generating equivalent program variants under a given test
input [35], [36], [37]. All these approaches depend on random
programs generated by program generators [33], [34]. Yang
et al. [33] propose Csmith for C program generation, while
Lidbury et al. [34] develop CLsmith to generate programs for
testing OpenCL compilers.

Although the basic idea of RDT, DOL, and EMI could be
applied for Simulink compiler testing, all these approaches
require CPS models as inputs. RECORD can generate diverse
CPS models to facilitate different testing strategies.

In addition to finding program optimization bugs, there
are works to find bugs in certain components in general-
purpose compilers, such as compiler warning bugs [38], [39],
and link-time bugs [40]. Jiang et al. [22] proposed CTOS to

test optimization sequence bugs in C compilers. RECORD is
different from these works since we do not focus on testing
these components in Simulink compiler.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we propose RECORD, an automated ap-
proach to generate diverse CPS models for Simulink compiler
testing. RECORD includes a feature vectorization component
and a reinforcement learning component, which address the
CPS model representation challenge and the configuration
learning challenge of Simulink compiler testing, respectively.
RECORD can generate a large number of CPS models with
diverse distributions of blocks in different libraries by intel-
ligently altering the configurations of CPS model generators.
RECORD significantly outperforms existing approaches for
Simulink compiler testing. Within three months, we have
reported 11 Simulink compiler bugs in total, of which 9 bugs
have been confirmed as new by developers. As part of future
work, we plan to test other CPS development tools and future
versions of Simulink with RECORD.
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