
0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3119186, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

Detecting Compiler Warning Defects Via
Diversity-Guided Program Mutation
Yixuan Tang, He Jiang, Member, IEEE , Zhide Zhou, Xiaochen Li, Zhilei Ren,

and Weiqiang Kong, Member, IEEE

Abstract—Compiler diagnostic warnings help developers identify potential programming mistakes during program compilation. How-
ever, these warnings could be erroneous due to the defects of compiler warning diagnostics. Although the existing technique (i.e.,
Epiphron) can automatically generate test programs for compiler warning defect detection, the effectiveness of Epiphron on defect-
finding is still limited, due to the limitation for generating warning-sensitive test program structures. Therefore, in this paper, we propose
a DIversity-guided PROgram Mutation approach, called DIPROM, to construct diverse warning-sensitive programs for effective compiler
warning defect detection. Given a seed test program, DIPROM first removes its dead code to reduce false positive warning defects. Then,
the abstract syntax tree (AST) of the test program is constructed; DIPROM iteratively mutates the structures of the AST to generate
warning-sensitive program variants. To effectively construct diverse warning-sensitive structures, DIPROM applies a novel diversity-
guided strategy to generate program variants in each iteration. With the generated program variants, differential testing is conducted
to detect warning defects in different compilers. In the experiments, we evaluate DIPROM with two popular C compilers (i.e., GCC and
Clang). Experimental results show that DIPROM significantly outperforms three state-of-the-art approaches (i.e., HiCOND, Epiphron,
and Hermes) by up to 18.93%∼76.74% in terms of the bug-finding capability on average. Meanwhile, DIPROM is efficient, which spends
less time on finding the same average number of warning defects. We at last applied DIPROM to the latest development versions of
GCC and Clang. After two months’ running, we reported 8 new warning defects; 5 of them have been confirmed/fixed by developers.

Index Terms—Compiler Testing, Differential Testing, Program Mutation, Test Program Generation

F

1 INTRODUCTION

COMPILER warnings are widely used by developers to
detect potential programming mistakes at compilation

time [1], [2]. A warning diagnostic message provides the
reason of the warning and the location information of the
problematic code (e.g., the line and the column) to help de-
velopers analyze programming mistakes. However, similar
to other application software, compilers still contain bugs. In
fact, more than 100 compiler warning defects are reported
for widely used compilers such as GCC and LLVM [2]. Due
to compiler defects, warning diagnostic messages could be
erroneous, spurious, and missing. Buggy compiler warn-
ings negatively impact the usability of compilers and the
productivity of developers [2]. For example, Clang misses a
warning diagnostic in the program which may lead to illegal
memory access [3]. The consequence of such a warning
defect could be severe, since it is also a type of software
vulnerability that may result in disastrous software failures
especially in safety-critical domains. Therefore, it is crucial
to ensure the quality of compiler warnings.

To detect compiler defects, compiler testing is an effec-
tive approach [4], [5], [6]. Compiler testing usually employs

• Y. Tang, H. Jiang, Z. Zhou, Z. Ren, and W. Kong are
with School of Software, Dalian University of Technology (DUT),
Dalian, China, and Key Laboratory for Ubiquitous Network and
Service Software of Liaoning Province. H. Jiang is also with
DUT Artificial Intelligence Institute, Dalian, China. E-mail: tangy-
ixuan@mail.dlut.edu.cn, jianghe@dlut.edu.cn (corresponding email),
cszide@gmail.com, zren@dlut.edu.cn, and wqkong@dlut.edu.cn.

• X. Li is with the SnT Centre for Security, Reliability and Trust, University
of Luxembourg, Luxembourg. E-mail: xiaochen.li@uni.lu

Manuscript received August XX, 2020; revised April XX, 2021.

program generation tools to generate test programs with
various language features. These test programs are fed into
different compilers to trigger unexpected or inconsistent
behaviors, which may indicate compiler defects [7], [8], [10].
To support the above process, Csmith [10] is the most widely
used program generation tool in the compiler testing area.
However, Csmith only supports a subset of C language
features which limits its capability at detecting compiler
warning defects. Recently, program mutation becomes in-
creasingly more important for validating compilers, which
constructs test programs by modifying parts of existing
seed programs, such as Orion [20], Athena [36], and Her-
mes [49]. However, all of them are not specific for compiler
warning testing. Hence, Sun et al. [2] propose Epiphron,
the state-of-the-art compiler warning detection approach,
which can generate test programs with nearly all C lan-
guage features. Epiphron first produces massive compilable
test programs according to a set of randomly selected C
language grammars. Then, Epiphron intentionally inserts
warning-free bodies into conditional statements of the gen-
erated test programs, such as adding an empty statement
“;” to if statements, and “break” into loop statements. The
modified test programs are used to trigger and detect buggy
compiler warnings. However, according to our preliminary
analysis, we find that the defect-finding ability of Epiphron
is still limited. First, merely inserting warning-free bodies
into conditional statements may reduce the diversity of
the modified test programs. Second, compiler defects are
not only within a special statement (e.g., “if” and “for”
statement); Epiphron may not well detect warning defects
in other types of problematic statements.

Authorized licensed use limited to: Dalian University of Technology. Downloaded on March 31,2022 at 02:34:52 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3119186, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

1 / / f i l e = s . c
2 i n t main () {
3 / / i n c o m p l e t e l o o p c o n d i t i o n in ’ f o r ’ s t a t e m e n t
4 f o r (i n t i = 0 ; i < 2 ;) {
5 }
6 }

Clang 10 outputs :
s . c : 4 : 1 8 : warning : v a r i a b l e ’ i ’ used in loop

condi t ion not modified in loop body [−Wfor−
loop − a n a l y s i s]

4 | f o r (i n t i = 0 ; i <2;){

(a) GCC warning d e f e c t #92210

1 / / f i l e = s . c
2 / / m i s s i n g p a r a m e t e r s o f f u n c t i o n d e c l a r a t i o n
3 s t a t i c i n t func 1 () ;
4 i n t func 1 (i n t a) {
5 return a ;
6 }

Clang 10 outputs :
s . c : 3 : 1 8 : warning : t h i s funct ion d e c l a r a t i o n i s

not a prototype [− Wstr ic t −prototypes]
3 | s t a t i c i n t func 1 () ;

(b) GCC warning d e f e c t #92209

Fig. 1. Examples of GCC warning defects within questionable structures
(https : //gcc.gnu.org/bugzilla/showbug.cgi?id = 92210 and https :
//gcc.gnu.org/bugzilla/showbug.cgi?id = 92209).

To explain our observation, Fig. 1 shows two warning
defects that we detected within the loop statement and the
declaration statement. In the code snippet of Fig. 1(a), the
loop conditional statement “i++” is discarded in Line 4,
which makes the “for” statement non-terminally executed.
Clang warns on this incomplete structure and provide a con-
crete warning message, whereas GCC considers the “for”
statement as free of problems. In this scenario, if developers
use GCC and neglect the problematic statement, the infinite
loop in the program may exhaust the resources of CPU
without outputting any expected results. In Fig. 1(b), the
code snippet unintentionally misses a parameter type of
the function declaration in Line 3. Clang warns on this
situation with the correct location, while GCC incorrectly
reports the location of this warning. If compilers provide
wrong warning messages or even miss these traps and
pitfalls of programs, they could output unexpected results
and prevent developers from enhancing the quality of code
at the compilation time. According to the principles of
compiler warnings [2], the above problematic code snippets
are referred as “warning-sensitive” structures. Therefore, it
is crucial to construct test programs with diverse warning-
sensitive structures to thoroughly test compiler warnings.

In this paper, we propose DIPROM (DIversity-guided
PROgram Mutation), an effective technique to generate
test programs with diverse warning-sensitive structures for
compiler warning testing. First, given a seed test program,
DIPROM removes the dead code regions based on the cover-
age information of the seed program to avoid false positives.
Warning defects on dead code are often not regarded as
the real compiler defects because it is a compiler vendor’s

design decision whether to warn on unreachable code [2].
We call the remained code in the seed as a live test program.
Second, DIPROM generates program variants by iteratively
employing 63 mutators (i.e., the pruning operation and the
inserting operation) of the live test program. To generate
diverse program variants, DIPROM employs Markov Chain
Monte Carlo (MCMC) sampling to guide mutator selection.
More specifically, during each iteration, DIPROM considers
two capabilities of each mutator: the first capability is to
diversify the newly generated program variant and the
existing program variants; and the second capability is to
generate compilable program variants. Based on the two
capabilities, DIPROM calculates a priority score for each
mutator, and utilizes the priority score as a discipline in
the Metropolis choice to select each mutator. Since DIPROM
can disrupt statements by the pruning operation and in-
sert external statements by the inserting operation, the
control- and data-flow among the program variants tend
to be different. Thus, DIPROM produces a large number
of diverse warning-sensitive structures in program variants.
Last, these program variants are compiled by different com-
pilers; the warning diagnostic messages emitted by com-
pilers are obtained and aligned. Any inconsistent warnings
among compilers could indicate a compiler warning defect.

We evaluate DIPROM over two popular C compilers
(four versions in total), i.e., GCC [11] and Clang [12],
under three testing scenarios (i.e., the cross-compiler sce-
nario, the cross-version scenario, and the cross-optimization
scenario). Evaluation results show that DIPROM performs
better than the comparative approaches, i.e., HiCOND [25],
Epiphron [2], and Hermes [49]. In total, DIPROM de-
tects 76.74%, 34.30%, and 18.93% more warning defects
on average than HiCOND, Epiphron, and Hermes, respec-
tively. In addition, we examine the influence of muta-
tion operations and the diversity-guided mutation strategy
in DIPROM. We design three variants of DIPROM, i.e.,
DIPROMprune (i.e., DIPROM with only pruning operators),
DIPROMinsert (i.e., DIPROM with only inserting opera-
tors), and DIPROMrandom (i.e., DIPROM without guidance).
During the given testing period, DIPROM outperforms its
variants by detecting 9.46%∼28.21% more warning defects
on average. Furthermore, we apply DIPROM to the latest
development versions of GCC and Clang. Based on the
analysis results of DIPROM, we reported 8 new warning
defects in two months; 5 warning defects have been con-
firmed/fixed.

The major contributions of this paper are as follows:

• We present a novel approach, DIPROM, the first effort
leveraging the mutation based approach for compiler
warning testing. DIPROM designs 63 mutators for
C test programs and employs the MCMC sampling
to guide mutator selection, which help generate di-
verse warning-sensitive structures to examine compiler
warning diagnostics.

• We conduct extensive experiments on GCC and Clang
and show that, DIPROM is more effective than the
comparative approaches in detecting warning defects.

• We apply DIPROM to the latest development versions
of GCC and Clang. DIPROM helps developers detect 8
warning defects; 5 of them have been confirmed/fixed.

Authorized licensed use limited to: Dalian University of Technology. Downloaded on March 31,2022 at 02:34:52 UTC from IEEE Xplore. Restrictions apply.

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92210
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92209
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92209

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3119186, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

The remainder of this paper is organized as follows.
Section 2 presents the background of compiler warnings. We
demonstrate the framework in Section 3 and detail the im-
plementation of our approach in Section 4. The experiential
setup and the experiential results are shown in Section 5 and
Section 6, respectively. In Section 7, threats to validity are
discussed. We review the related work in Section 8. Finally,
Section 9 concludes this paper.

2 BACKGROUND

In this section, we introduce the background of compiler
warnings, including the importance of compiler warnings,
the principles of compiler warnings, the categories of com-
piler warning defects, and the compiler warning testing.

2.1 Importance of Compiler Warnings

Compiler warnings are important to both novice and experi-
enced developers, since warning diagnostics often indicate
potential problems in the programming code or even vul-
nerabilities in well constructed systems [2], [16]. Developers
can leverage these warning diagnostics to detect bugs, espe-
cially in the early lifecycle of software [17]. Indeed, many
large companies in different fields have been leveraging
warning diagnostics to improve code quality over the years.

Code Maintenance. Software engineers in Google uti-
lize compiler warnings to check incorrect dependencies
in Google’s Java codebase [13]. They enable two warning
flags (i.e., “-direct-dependency” and “-indirect-dependency”) to
capture the dependencies in each JAR on the classpath.
The unneeded dependencies marked by the compiler are
subsequently removed by engineers, while the missing di-
rect dependencies are added to prevent the code building
failure. Doing so not only helps resolve conflicts when
upgrading a subset of dependencies in the older version to
a new version, but also decreases the incompatibilities for
different functionalities and APIs.

Code Review. The Security Engineering team at Mi-
crosoft leverages compiler warnings to identify security
vulnerabilities during code reviews [14]. They increase the
level of compiler diagnostics and check each warning where
the compiler warns. Their experience shows that several
warnings are actually bugs, or even vulnerabilities in the
program. Furthermore, several common vulnerabilities (e.g.,
buffer overflow, uninitialized variable, and missing param-
eter) could be easily issued by compiler warnings [15], [16].

2.2 Principles of Compiler Warnings

Compiler warns on problematic code fragments and pro-
vides warning diagnostic messages to discover potential
programming mistakes. Typically, a warning contains the
location information of the problematic code fragment, the
reason of the warning, the warning diagnostic flag, and the
specific problematic code in the code fragment. For example,
in Fig. 1(a), Clang 10 outputs a warning message with the
prefix “s.c:4:18”, where “s.c” indicates the file name and
“4:18” shows the warning location on Line 4 and Column 18.
Subsequently, Clang reports a compiler warning message
as: “variable ‘i’ used in loop condition not modified in

loop body”. The “[-Wfor-loop-analysis]” is a warning di-
agnostic flag which warns on potential problems in the for-
loop structure. The specific problematic code is presented
below, corresponding to the location of the warning. Such
a detailed warning message can help developers identify
the problematic code fragment easily, especially in large
software projects.

In general, the problematic code in which the compiler
warns can be divided into two categories [2]. One is the
warning-sensitive structures in the code (or bad code [2]),
such as programming mistakes and code smells. Examples
in Fig. 1 belong to this category because although the code
is valid and executable, it is deprecated in the C standard
and unsafe in practice. The other one is the undefined
behavior in programming language standards, such as the
null pointer dereferencing, the signed integer overflow, and
the spatial memory safety violation [10]. These problematic
codes induce compilers to check the syntactic and semantic
information via static program analysis and output warn-
ings on them. Therefore, they have a high probability of
triggering compiler warning defects if compilers have poor
warning checkers.

2.3 Categories of Compiler Warning Defects
Compilers could output buggy warning diagnostic mes-
sages for the problematic code. For example, GCC misses
the warning diagnostic messages in Fig. 1(a) and reports
the wrong location of the warning diagnostic messages in
Fig. 1(b). In such situations, compiler warning defects are
triggered. According to the root causes of buggy warning
diagnostics, compiler warning defects can be classified into
three categories, including erroneous warnings, spurious
warnings, and missing warnings [2].

Erroneous warnings refer to those that contain confusing
reasons of the warning or the incorrect location of the
problematic code. Spurious warnings are the redundant
warnings which are usually false positives on benign code.
Missing warnings discard a potential bug in problematic
code under two situations. One is that the compiler ig-
nores the warnings although there are specific warning
diagnostic flags to produce such warnings. This is because
the corresponding warning diagnostic flag only considers
limited warning examples and thus misses the diagnostics
on other cases. In addition, a warning is missing when there
are incompatible warning diagnostic flags among different
compilers or different versions during upgradation. In this
situation, the warning defect can be avoided by adding new
warning diagnostic flags or expanding the warning scopes
of existing warning diagnostic flags, which can be also
regarded as an enhancement of compiler warning checkers.

2.4 Compiler Warning Testing
The recent effort on analysis of compiler warning diagnos-
tics is Epiphron [2]. It takes the C language grammars as
inputs, and then generates a large number of test programs
based on the randomly selected grammars. Epiphron keeps
the undefined behaviors in the test programs since they are
likely to trigger compiler warnings as shown in Subsec-
tion 2.2. Besides, Epiphron randomly injects warning-free
bodies in condition statements, such as an empty statement

Authorized licensed use limited to: Dalian University of Technology. Downloaded on March 31,2022 at 02:34:52 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3119186, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

grammar
seed

program
program
mutation

program
statements

statement
candidates

program
variants

Program Generation Compiler Testing

warning
defects

compilers

warning
aligner

inconsistences

differential
testing

Differential Testing

Compiler c1

Compiler cn

warning aligner
inconsistences

seed
program

dead code
elimination

Preprocessing

program
variants

live test
program

generate

measure
diversity

Program Mutation

program
mutation

program
statements candidate

statements
external

statements

test suites warning defect

compiler cn

warning w1 warning wn

compiler c1

warning
aligner

warning
inconsistence

Fig. 2. Framework of our approach.

“;” for “if” statements and “break” for loop statements to
avoid false positives to some extent.

The generated test program is fed into different com-
pilers (e.g., c1 and c2) to obtain the warning diagnostics
(e.g., w1 and w2). The assumption of Epiphron is that the
two compilers c1 and c2 are largely defect-free; ideally they
should produce the same set of warnings (i.e., w1 = w2) for
the same test program. Any detected inconsistent warnings
between c1 and c2 is likely a compiler warning defect in
either c1 or c2 (or both). Specifically, Epiphron leverages a
specific warning parser and a warning aligner to analyze
compiler warnings produced by each compiler under the
compilation time. The warning parser is able to parse each
warning diagnostic to a structured record by extracting
the location (e.g., lines and columns of the warning), the
warning description, and the warning types. The warning
aligner determines whether the structured records are con-
sistent between different compilers. If there are inconsistent
records, the test program that triggers these inconsistencies
is finally reduced and reported to compiler developers.

3 FRAMEWORK

DIPROM targets generating test programs with diverse
warning-sensitive structures for compiler warning testing.
As depicted in Fig. 2, DIPROM mainly consists of three
steps, including preprocessing, program mutation, and dif-
ferential testing. Given a seed program, DIPROM first elim-
inates all the dead code in the program at the preprocessing
step. The program without dead code is referred to the live
test program. Then in the mutation step, DIPROM employs
a diversity-guided mutation to mutate the live test program
by pruning and inserting code snippets on it. Finally, based
on the generated program variants, DIPROM employs dif-
ferential testing to identify compiler warning defects.

3.1 Preprocessing
Given a seed test program, DIPROM eliminates all dead
code in the program. Dead code usually refers to the unexe-
cuted statements in a program when the program runs with
the specific test input [20]. Hence DIPROM can remove the
dead code entirely without changing this program’s behav-
ior. It is necessary to eliminate dead code in seed programs
since warning defects on dead code regions are usually
ignored by compilers’ developers and it is the compiler
vendor’s design choice on whether to warn on that code [2].

By doing so, DIPROM can reduce false positives of warning
defects in the following procedures. We eliminate the dead
code according to the coverage information of the program.
Code coverage tools could compute the frequencies that a
program’s statement executes at runtime when given some
specific inputs. We can conveniently use such a tool to iden-
tify the executed (i.e., “live”) code and the unexecuted (i.e.,
“dead”) code. The dead statements are removed and only
the live statements are kept in the test program to perform
the following mutation. We refer such test programs to live
test programs in the following subsections.

3.2 Program Mutation

To construct warning-sensitive structures in test programs,
DIPROM performs two operations (i.e., pruning operation
and inserting operation) to prune existing statements from
and insert additional statements into the live test program.
However, we cannot generate all program variants for a
single live test program due to the huge mutation space.
Therefore, DIPROM adopts a diversity-guided program mu-
tation to generate diverse program variants for compiler
warning testing.

3.2.1 Pruning Operation
We prune statements based on the AST of the live test
program according to the predefined probability pprune.
That is, each node in the AST would be deleted with the
probability pprune. If a leaf node is selected to prune, we
simply delete the leaf node; otherwise, if a parent node is
to be deleted, we remove all nodes in its subtree, includ-
ing all children nodes. However, not all AST nodes are
proper to prune because syntactic errors may be injected
when broking the structure of the AST. For example, if a
declared variable is deleted, we will introduce an error (i.e.,
“use of undeclared identifier”) in the following statements
which have the “def-use” data dependency on that variable.
Thus, in this study, we prevent pruning the AST nodes of
identifiers that are declared, defined, or referenced in the
test program. In addition, to ensure the pruned variant is
syntactically correct, we compile the variant and examine
whether an executable file is generated after compilation. If
not, we discard this variant and restore the live test program
for the next pruning until no errors are introduced.

We define 53 mutators for the pruning operation, al-
lowing the seeds to be fully mutated via rewriting their

Authorized licensed use limited to: Dalian University of Technology. Downloaded on March 31,2022 at 02:34:52 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3119186, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

TABLE 1
Typical pruning mutators

Mutation type Typical mutators Example (Code before mutation
→Code after mutation)

Warning diagnostic

Prune variable
Removing the attributes of a

variable, e.g., qualifiers, modifiers,
and types;

static float a;

→ static a;

warning: type specifier
missing, defaults to “int”

[-Wimplicit-int]

Prune operator

Removing a operator and its
attributes, e.g, unary operators,
binary operators, and ternary

operators;

int a = 1>0? 1 : 0;
→ int a = 1>0? : 0;

warning: ISO C forbids
omitting the middle term of
a ? : expression [-Wpedantic]

Prune
expression
statement

Removing the expression and its
attributes, e.g., assignments and

arithmetic expressions;
a = 1 ;
→ ;

warning: empty expression
statement has no effect

[-Wextra-semi-stmt]

Prune Control
structure

Removing the structure and its
attributes, e.g., the loop structure,
the branch structure, and the jump

structure;

if (a) goto Label ;

→ if (a);

warning: suggest braces
around empty body in an “if”

statement [-Wempty-body]

Prune function Removing the function declaration
and the whole function body;

int func(void) ;

→;

warning: no previous prototype
for function “func”

[-Wmissing-prototypes]

syntactic structures. Specifically, we prune five types of
structures in the program, including variables, operators,
expression statements, control structures, and functions. Ta-
ble 1 shows some typical mutators. For example, a mutator
for “prune expression statement” can randomly remove the
whole nodes of an expression statement in the AST. After
pruning, DIPROM transforms the pruned AST into a test
program which leaves an individual semicolon in the place
of the pruned statement. This incomplete structure triggers
a warning of LLVM: “empty expression statement has no
effect [-Wextra-semi-stmt]”.

Given a large seed program with various and abun-
dant control- and data-dependencies, DIPROM is capable of
deleting code in different structures on different granulari-
ties (e.g., a single statement and a block of code). Therefore,
the pruned program variants may have different warning-
sensitive structures, which are appropriate for testing com-
piler warnings.

3.2.2 Inserting Operation

For the inserting operation, we maintain a database of candi-
date statements and select suitable statements for insertion.
We extract candidate statements from existing seed pro-
grams generated by Epiphron and the test suites extracted
from the compiler under test. Specifically, given a corpus of
programs, we traverse the ASTs of the corpus and extract
candidate statements1 at the statement level, the block level,
and the function level. Meanwhile, we determine the context
required in each extracted statement and construct the cor-
responding context table 〈context, statement〉. Specifically,
we extract four types of required context for each piece of
candidate statement, including 1) the variables and their
types used in the statement but defined or declared outside;
2) the functions and their signatures (i.e., the number of

1. We mainly consider 10 types of candidate statements in the C
test programs, including the simple expression statement, the “if”
statement, the “for” statement, the “while” statement, the “continue”
statement, the “break” statement, the “switch” statement, the “goto”
statement, the “return” statement, and the whole function.

parameters and return types) used in the statement but
defined and declared outside; 3) the labels used in the
statement but defined outside; and 4) the types of special
statements including the “break” statement and the “con-
tinue” statement.

When performing the inserting operation, we only insert
the candidate statements whose required context could be
satisfied by the supplied context in the insertion point. This
ensures the new program variant valid and compilable.
However, different locations of insertion points are suitable
for inserting different types of candidate statements. For
example, the “if” statements can only be inserted in the
function bodies, and the function definitions can only be
added in the global scope of the seed test program. There-
fore, we should search a suitable insertion scope for each
type of candidate statements. Within the proper insertion
scope, we locate the insertion point at the statement level of
the AST based on a probability pinsert, and then perform a
depth-first traversal on the AST. During this traversal, we
keep a supplied context table that contains the same nec-
essary information as the required context at the insertion
point. With the supplied context table, we could select a
compatible candidate statement from the database, in which
the required context in the candidate statement is satisfied
by the supplied context at the insertion point. Finally, we
rename the required context in the candidate statement to
the corresponding supplied context to make the inserted test
program compilable. Regarding the statement renaming,
we prioritize selecting local variables and functions in the
supplied context table for references. Otherwise, we search
the global context to find a suitable alternative.

Besides, we could insert candidate statements before or
after the insertion point with the same probability. Since we
perform the insertion operation at the statement level of the
AST, it is easy to insert a candidate statement before the live
statement. We only need to keep the candidate statements
sharing the same parent as the live statement. However,
when inserting code after a live statement, we should first
determine whether the live statement has child statements.

Authorized licensed use limited to: Dalian University of Technology. Downloaded on March 31,2022 at 02:34:52 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3119186, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

TABLE 2
Typical inserting mutators

Mutation type Typical mutators Example (Code before mutation
→Code after mutation)

Warning diagnostic

Insert
expression
statement

Inserting a single statement,
e.g., an assignment and an

arithmetic expression;

int main(){int a = 1; ...}
→ int main(){int a = 1;

int b = (0! = ((−1)|a)); ...}

warning: bitwise comparison
always evaluates to true

[-Wtautological-compare]

Insert control
structure

Inserting a type of control
statement, e.g., the “for”

statement and the “break”
statement;

int func(){int a; ...}
→ int func(){int a; ... return a; }

warning: variable “a” is
uninitialized when used here

[-Wuninitialized]

Insert function
Inserting the function definition
and the corresponding function

call statement;

int main(){...unsigned int a; ...}
→ int func(int b){...return b; }
int main(){...unsigned int a;

a = func(0); ...}

warning: implicit conversion
changes signedness: “int” to

“unsigned int”
[-Wsign-conversion]

If so, we insert the candidate statements as child statements;
otherwise, we treat the candidate statement as the sibling
nodes of the live statement.

We design 10 mutators for the inserting operation. Ta-
ble 2 presents some typical mutators. Overall, we insert
three types of structures in the program, including expres-
sion statements, control structures, and function bodies.
For example, when DIPROM inserts a return statement in
the live test program and renames the variables in this
statement to “a”, the mutated program triggers a warning
diagnostic, i.e., variable “a” is uninitialized when used
here [-Wuninitialized]. Note that, DIPROM could insert a
simple assignment statement, but also selecting complicated
candidate statements from our database, such as the branch
statement (e.g., “if”), the loop statement (e.g., “for”), and
the whole function body. Inserting these statements into the
seed program could generate warning-sensitive structures
to some extent. Furthermore, the inserting operation could
change the control- and data-dependencies of the live test
program, making the generated program variants diverse
and suitable for testing compiler warnings.

3.2.3 Diversity-guided Program Mutation
Due to the huge mutation space, we cannot generate all
program variants for a test program. Intuitively, diverse
warning-sensitive structures could aid in thoroughly testing
compiler warnings. Hence, one of the most effective ways is
to generate a program variant that differs from the existing
ones as much as possible. In particular, we use the program
distance to measure the difference between two programs.
DEFINITION 1. (Program Distance) The distance Dist be-

tween two test programs P1 and P2 is a function that
measures the differences of their control-flow graphs
(CFGs) and their statements. Specifically,

Dist(P1, P2) = GED(G1, G2) + d(P1, P2), (1)

where G1 and G2 are the CFGs of the test programs
P1 and P2, respectively. GED(·) represents the graph edit
distance [26] and d(·) represents the Jaccard distance [27]
between the statements in P1 and P2. GED(·) is defined as
follows:

GED(G1, G2) = min
λ∈γ(G1,G2)

∑
ei∈λ

c(ei), (2)

where ei is the edit operation given by deletions, inser-
tions, and substitutions on both nodes and edges in CFGs.
γ(G1, G2) denotes the set of all possible serialized edit
operations that transform G1 into G2. c(ei) is the cost
function for the edit operation ei, measuring the strength of
the corresponding operation. Specifically, we set the same
strength for each edit operation in this paper. In addition,
d(·) is formulated as follows:

d(P1, P2) = 1− Stmp(P1)
⋂
Stmp(P2)

Stmp(P1)
⋃
Stmp(P2)

, (3)

where Stmp(P1) and Stmp(P2) indicate each single line of the
statements in P1 and P2, respectively.

In Formula 1, we consider both CFGs and Jaccard dis-
tance, since the program distance could capture both a
simple problematic structure in the variant that does not
vary the control flows (such as pruning or inserting a
simple straight-line statement), and sophisticated problem-
atic structures that alter the control- and data-dependencies
vastly. This helps generate diverse warning-sensitive struc-
tures which are likely to exercise the compiler warnings
more thoroughly.

For DIPROM, given a seed test program, different muta-
tors are not equally effective to construct diverse warning-
sensitive structures. The mutators that are more frequently
to generate valid and diverse program variants should be
selected with higher probabilities for further mutations.
Based on this insight, we propose our diversity-guided pro-
gram mutation. That is, during the process of constructing
program variants, DIPROM first selects a seed test program
to mutate, and then selects a mutator to perform in each
iteration.

Seed Program Selection. The initial seed test program is
generated by Epiphron. The reason for selecting Epiphron-
generated programs is that these programs support nearly
all the language structures of the C language which are
effective for testing compiler warnings than other program
generators [2]. The program variants are derived from this
initial test program. That is, under the given terminating
condition (i.e., the number of generated program variants),
the i-th variant is mutated on the initial seed test program
and is independent of the (i-1)-th variant. The reason is that,
if the i-th variant treats the (i-1)-th variant as the seed test

Authorized licensed use limited to: Dalian University of Technology. Downloaded on March 31,2022 at 02:34:52 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3119186, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

program, the same problematic structure with the (i-1)-th
variant may be detected which results in duplicate warn-
ings and a burden of the limited computational resources.
Therefore, DIPROM constructs each program variant based
on the initial seed test program.

Mutator Selection. Based on a seed test program,
DIPROM selects mutators to generate program variants.
However, different mutators have different capabilities in
constructing diverse test programs; the same mutator also
performs differently in constructing compilable test pro-
grams at different positions of the seed program. Therefore,
we design an adaptive procedure to select mutators for
generating a set of valid and diverse program variants.
Specifically, we compute a priority score for each mutator.
We rank the mutators by the priority scores and determine
whether a mutator in the ranking list is worth accepting. The
priority score for each mutator Mut is defined as follows:

Score(Mut) = (
1

n

n∑
i=1

Dist(P, Pi)) ∗ succ(Mut), (4)

where n is the number of existing program variants for a
seed test program. P is a new program variant generated by
applying mutator Mut on the seed test program. Dist(·) is
the program distance, computed by Formula 1. succ(·) is the
success rate of generating compilable program variants by
Mut , which is formulated as follows:

succ(Mut) =
#compilableMut

#allMut
∗ 100%, (5)

where #compilableMut is the number of compilable pro-
gram variants generated by Mut under testing, and #allMut

is the number of all program variants generated by Mut .
At the beginning of testing, we randomly select and

accept a mutator, and then update the priority score of
that mutator. Mutators are ranked in the descending or-
der according to the priority scores. However, we do not
directly select the mutator ranked at the first position for
the next mutation, since the ranking is based on the his-
torical results of these mutators which may not perfectly
predict the further results. Ideally, each mutator should
have some probabilities to be selected and the mutators
ranked at higher positions should be more easily selected
than those with lower positions. Thus, the task of mutator
selection can be regarded as a problem of sampling from
a probability distribution. In our context, the next mutator
Mutb selected for the i-th mutation only depends on the
updated ranking list of priority scores of the current mutator
Muta for the (i-1)-th mutation. It is a typical Markov Chain
(MC). Therefore, to solve the sampling problem, DIPROM
employs the Metropolis-Hastings (MH) algorithm, a popu-
lar Markov Chain Monte Carlo method. Given a proposal
distribution of the samples, the MH algorithm randomly
samples the next state (i.e., mutator) from the current state
(i.e., mutator) according to the proposal distribution. During
the process, an acceptance probability is introduced to de-
termine whether to perform the state transition (i.e., move
from the current state to the next state). Therefore, the MH
algorithm finally generates a sequence of samples whose
distribution closely approximates the proposal distribution.
Here, following the prior work [36], [50], we set the proposal
distribution to be the geometric distribution, which is the

probability distribution of the number X of Bernoulli trials
needed to get one success. If the probability of success on
each trial is p, the probability that the k-th trial is the first
success can be calculated as Pr(X = k) = (1− p)k−1p.

During each mutation, the mutators are selected ran-
domly, and therefore the proposal distribution is symmetric.
Given a current mutator Muta, the acceptance probability
of the next mutator Mutb is computed as follows:

Pb(Mutb|Muta) = min(1,
P r(Mutb)

Pr(Muta)
)

= min(1, (1− p)kb−ka),
(6)

where kb and ka are the positions of Mutb and Muta in the
ranking list. Note that, if Mutb is ranked higher than Muta
(i.e., kb < ka), Mutb is always accepted; otherwise, Mutb
still has a certain probability (1 − p)kb−ka to be accepted.
If Mutb is finally accepted, DIPROM updates its priority
score and re-ranks these mutators for the next iteration. If
not, DIPROM re-selects a mutator until it is accepted for the
mutation.

Parameter Estimation. We set the success probability
of each Bernoulli trial p by satisfying the following three
conditions:

0.95 6
63∑
k=1

Pr(X = k) 6 1,

p >
1

63
,

ε < (1− p)63−1p,

(7)

where ε is a very small deviation (e.g., 0.001). The first con-
dition ensures that the accumulative probability approaches
1. The second condition guarantees that the first mutator
(having the highest priority score) should be selected with
the probability larger than 1

63 (63 is the number of mutators
for pruning and inserting). The third condition ensures that
the mutator with the lowest priority score still has some
probabilities to be selected. Therefore, the initial value of p
should be in the range of (0.0464,0.0651). In this study, we
set p to be 4

63 ≈ 0.063.

3.2.4 Overall Algorithm
We formally present DIPROM in Algorithm 1, Algorithm 2,
and Algorithm 3. The function GuideGen in Algorithm 1
generates a set of program variants via diversity-guided
mutation. Algorithm 2 performs the pruning operation via
traversing the AST node with the function Prune. Algo-
rithm 3 employs the inserting operation to generate pro-
gram variants with the function Insert.

The inputs of Algorithm 1 are the seed programs, the
number of generated program variants, and a set of muta-
tors. Through a series of mutation operations, Algorithm 1
finally outputs a set of variants. In Algorithm 1, Lines 2-4
initialize several variables. Lines 5-7 eliminate the dead code
in the seed program, and therefore construct a live program
P without unexecuted statements in it. Line 8 randomly
selects a mutator as the current one (i.e., Muta). Lines 9-
29 conduct the diversity-guided mutation to generate the
expected number of program variants. Line 10 gets the
position of Muta in the ranking list of mutators. Lines 11-15
select the next mutator Mutb. Based on the mutator Mutb,

Authorized licensed use limited to: Dalian University of Technology. Downloaded on March 31,2022 at 02:34:52 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3119186, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

Algorithm 1: Diversity-guided Program Mutation
Input: SP , Epiphron-generated seed test program

N , number of program variants
Mut, a list of mutators [Muti|i ∈ 1...63]

Output: PV , a set of program variants
1 Function GuidedGen(SeedProgram SP, VariantNum N,

Mutators Mut):ProgramVariant PV:
2 num← 0/* the number of variants */
3 score← ∅/* the priority scores */
4 PV ← ∅/* a list of variants */

/* compile a program without opt. */
5 Pexe ← compile(SP, “−O0′′)

/* collect the coverage statements */
6 C ← coverage(Pexe.Execute())
7 P ← SP ∩ C/* get the live test program */
8 Muta ←Muti←random(1...63)

9 while num 6 N do
10 ka ← rank(Muta.score)
11 do
12 Mutb ←Muti←random(1...63)

13 kb ← rank(Mutb.score)
14 f ← random(0, 1)
15 while f ≥ (1− p)kb−ka

16 if Mutb is a pruning mutator then
17 P ′ ← Prune(AST (P),Mutb, False)
18 else
19 P ′ ← Insert(AST (P),Mutb, False)
20 if P’ is compilable then
21 PV ← PV ∪ P ′

22 num← num+ 1
23 Mutb.dist← Avg(

∑n
i=0 dist(P

′, Pi))
24 Mutb.succ← succ(Mutb)
25 Mutb.score←Mutb.dist ∗Mutb.succ
26 Muta ←Mutb
27 else
28 Mutb.succ← succ(Mutb)
29 Mutb.score←Mutb.dist ∗Mutb.succ

30 return PV

Line 16 determines whether it is a pruning mutator. If Mutb
is a pruning mutator, Line 17 selects the function Prune
to generate a program variant P’ by pruning statements
on the AST of P; otherwise, Line 19 employs the function
Insert to generate the program variant P’. If the variant P’
is compilable, Lines 21-26 accept the variant and update the
priority score of mutator Mutb. Specifically, Line 21 adds
the variant into the set of program variant PV; Line 22
updates the current number of accepted program variants;
Line 23 updates the capability of Mutb (i.e., Mutb.dist)
on generating diverse program variants by calculating the
average program distance between P’ and the existing
program variants in PV according to Formula 1; Line 24
updates the success rate of Mutb (i.e., Mutb.succ) according
to Formula 5. Based on the Mutb.dist and the Mutb.succ,
we calculate the current priority score (i.e., Mutb.score) of
Mutb in Line 25 according to Formula 4, and take Mutb as
the current mutator for the next iteration in Line 26. If P’
has not yet been adopted in PV, the priority score of Mutb
is updated by just changing its success rate in Lines 27-29.

In function Prune of Algorithm 2, since we only need to
generate one program variant by pruning a node and its
children nodes, Line 2 leverages a global variable flagPro to

Algorithm 2: Pruning operation
Input: ast, AST of a seed test program

Mut, a pruning mutator
flagPro, a global variable initialized to False

Output: P ′, a program variant
1 Function Prune(AST ast, Mutator Mut, Global

flagPro):ProgramVariant P’:
2 if flagPro then
3 return

4 node← traversal(ast,Mut)
5 if FlipCoin(node) then
6 ast′ ← delete(node, ast)
7 P ′ ← transform(ast′)
8 flagPro← True
9 return P ′

10 else
11 foreach node′ ∈ node.Children() do
12 Prune(node’, Mut, flagPro)

Algorithm 3: Inserting operation
Input: ast, AST of a seed test program

Mut, a inserting mutator
flagPro, a global variable initialized to False

Output: P ′, a program variant
1 Function Insert(AST ast, Mutator Mut, Global

flagPro):ProgramVariant P’:
2 if flagPro then
3 return

4 node← traversal(ast,Mut)
5 if FlipCoin(node) then
6 supplied← extract(context, node)
7 do
8 num← size(sampleMut)
9 sample← samplei←random(1...num)

10 required← extract(context, AST (sample))
11 while required ∈ supplied
12 sample′ ← sample.Rename(supplied, required)
13 P ′ ← insert(P, transform(node), sample′)
14 flagPro← True
15 return P ′

16 else
17 foreach node′ ∈ node.Children() do
18 Insert(node’, Mut, flagPro)

determine whether a program variant is generated during
the pruning operation. If flagPro is True, Line 3 returns NULL
to finish the pruning process. Otherwise, Line 4 performs a
depth-first traversal on the AST to select a pruned node ac-
cording to the mutator. Then, Line 5 uses a function FlipCoin
to stochastically decide whether the selected node should be
kept or removed. If FlipCoin returns True, we prune the node
and its children in Line 6. Next, we transform the pruned
AST into the corresponding program variant in Line 7 and
set the variable flagPro to True in Line 8. Line 9 returns
the generated program variant. For the case that FlipCoin
returns False, Lines 11-12 traverse the children nodes and
recursively invoke function Prune to process each children
node.

Algorithm 3 conducts the inserting operation to generate
a program variant. Similar to Algorithm 2, a global variable

Authorized licensed use limited to: Dalian University of Technology. Downloaded on March 31,2022 at 02:34:52 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3119186, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

flagPro is used in Line 2 to determine whether a program
variant is generated during the inserting process. If yes, Line
3 returns NULL to finish the inserting operation. Line 4 se-
lects an insertion point via a depth-first traversal on the AST
according to the mutator. A function FlipCoin is employed to
determine whether the selected point should be mutated in
Line 5. If FlipCoin returns True, Line 6 extracts the supplied
context information at the insertion point. Lines 7-11 sample
a suitable candidate statement in which the required context
in the candidate statement is satisfied by the supplied con-
text at the insertion point. Specifically, Line 8 determines
the number of candidate statements for a given inserting
mutator; Line 9 randomly samples a candidate statement,
and Line 10 extracts the required context of the sample.
Lines 12-13 rename the sample and insert the sample into
the live test program. Line 14 set the variable flagPro to True
and the generated program variant is returned in Line 15.
If FlipCoin returns False, Lines 17-18 traverse the children
nodes and recursively invoke function Insert to perform the
mutation process.

3.3 Differential Testing
In this study, we employ differential testing [9] to detect
compiler warning defects. Differential testing is a widely
used software testing technology that has been utilized
in many studies for detecting compiler bugs [2], [6], [10],
[42]. It assumes that the comparable compilers are imple-
mented based on the same specification and should output
the same warning diagnostics for the same test program.
When compilers under test produce different diagnostics, at
least one implementation contains warning defects. During
this process, the warning diagnostics produced by multiple
compilers are obtained and aligned.

To conveniently align the warning diagnostics, similar
to prior work on compiler warning testing [2], we design
a message parser to split the diagnostics into a list of pairs
for aligning the diagnostics. More specifically, the message
parser examines whether a warning diagnostic is parsable
and extracts corresponding warning information, including
the location, the warning description, and the type of the
warning. All the extracted warning information is assigned
to a set w. Given two sets of extracted warning information
w1 and w2 from two compilers, for each warning record
record1 in w1, we search whether there is a similar warn-
ing record record2 in w2, and then divide them into three
categories:
• Equivalent warning. Both record1 in w1 and record2 in

w2 have the same location and the same type of the
warning.

• Unmatched location. Both record1 and record2 have the
same type of the warning and are on the same line,
whereas the columns of the location for record1 and
record2 are unmatched.

• Missing warning. For record1 in w1, there is no waning
in w2 that has the same warning type and the same
location as record1, and vice versa.

For the inconsistent pairs in the latter two categories,
we check whether the identified warning defect is a real
compiler warning defect. Test programs that trigger real
warning defects are finally reduced by reduction tools, such

as C-Reduce [33] and Delta [34], [35]. The reduced test
program can be reported to compiler developers.

4 IMPLEMENTATION

In this section, we highlight the details and the design choice
in implementing DIPROM for C compiler warning testing2.

4.1 Coverage Collection

In the preprocessing, we eliminate the dead code re-
gions leveraging the coverage information of an Epiphron-
generated test program. Particularly, we employ Gcov3, a
widely used utility in the GNU Compiler Collection, to
extract coverage information for the test program. It profiles
coverage at the line level and generates a coverage file label-
ing how many times a line of code has been executed [21].
In the coverage file, an unexecuted statement is labeled as
“#####” at the beginning of the statement. Notably, Gcov
can also present ambiguous coverage information occasion-
ally. For example, in the “for” statements of a program,
Gcov marks the sub-statements inline the body of “for” as
executed while incorrectly marks the circulation condition
as unexecuted. To avoid this problem, we follow the prior
work [20] to remedy the ambiguity by checking whether
some of the sub-statements of an unexecuted statement
are executed. If so, we re-label the executed times of that
statement as the same frequencies as the sub-statements.
Since the Epiphron-generated test program takes no input
at the running time, we check and re-label the coverage
information, and remove all the unexecuted statements;
only the live statements are kept in the test program to
perform mutations.

4.2 Extracting Candidate Statements

Candidate statements are used to insert into the live test
programs. We extract them by traversing the AST of the
programs. To correctly apply the candidate statements, we
should extract the required context of each candidate state-
ment and compare the required context with the supplied
context at the insertion point. Besides, we remove the dupli-
cate candidate statements to avoid unnecessary comparison.

4.2.1 Candidate Statements Construction
We construct a database of candidate statements by extract-
ing codes from a given program corpus. In practice, we use
pycparser4, a parser for C programs written in Python, to
visit the AST of statements at the statement level, the block
level, and the function level. We do not extract code at other
levels of AST, such as the literal level, since these codes
may usually lead to syntactic errors and are difficult to seek
suitable insertion points. Nevertheless, the candidate state-
ments in our database have different complexities, ranging
from a single statement to an entire function body. We then
determine and extract four types of context required in each
extracted statement following the prior work [36]:

2. The materials of DIPROM are publicly available at
https://github.com/tangyixuan01/DIPROM

3. http://ltp.sourceforge.net/coverage/gcov.php
4. https://pypi.org/project/pycparser/

Authorized licensed use limited to: Dalian University of Technology. Downloaded on March 31,2022 at 02:34:52 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3119186, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

1

TABLE 1
Confirmed warning defects

a ::=x | n | opu a | a1 opa a2
b ::=true | false | not b |

b1 opl b2 | a1 opr a2
S ::=x := a | S1;S2 |

while(b) do S |
if(b) then S1 else S2

Fig. 3. Syntax rules for the WHILE language.

• The variables and their types used in the statement but
defined or declared outside. We exclude the variables
defined and used within the statement because it is not
necessary to rename these variables when performing
insertion. Note that, if a variable is associated with
a user-defined type, we explore the typedef and the
macros statement to replace the user-defined type with
a real type.

• The functions and their signatures (i.e., the number of pa-
rameters and return types) used in the statement but defined
and declared outside.

• The label used in the statement but defined outside. Labels
are usually appeared in the “goto” statement referring
to a chunk of code snippets. If the extracted statement
uses these labels, we have to rename the labels to satisfy
the local context of the insertion point.

• The types of special statements including the “break” state-
ment and the “continue” statement. The “break” statement
can be integrated into either “switch” statements or
loop statements; the “continue” statement can be only
injected into loop statements.

In practice, we extract all the variables, functions, and
labels in a piece of statement and exclude those that are
already defined in the extracted statements. We individually
extract special statements and mark them with the corre-
sponding types.

4.2.2 Duplicate Candidate Statements Elimination
We eliminate the duplicates to ensure the diversity of
candidate statements in our database. For each piece of
statement, we compare it with the existing statements in
the database to avoid duplicates. Following the presentation
of prior work [37], we view a candidate statement as a
syntactic skeletal structure S with placeholders for variables
(denoted as hole �v), function references (denoted as hole
�f), and constants (denoted as hole �c). In particularly,
let us consider a WHILE-style language which has been
widely used in prior program-analysis research [37], [38].
Fig. 3 shows the program syntax rules for the WHILE-style
language. In the rules, the non-terminals a, b, and S denote
arithmetic expressions, boolean expressions, and program
statements, respectively. Note that, we use the WHILE-style
language for the ease of presentation, and our technique
applies to the full C program language.

To obtain a candidate statement with holes, we recur-
sively employ a hole transformation JK to the WHILE-
style language. Fig. 4 presents the transformed grammars
for variables, function references, and constants. For each
WHILE-style candidate statement S, we say S is a skeleton
of S iff the abstract syntax tree (denoted as TS) of S is
the same as the transformed abstract syntax tree (denoted
as JTSK) of S, i.e., TS = JTSK. Holes �v , �f , and �c

are associated with the variable set (i.e., V), the function
reference set (i.e., F), and the constant set (i.e., C) which are
extracted from the candidate statements. Therefore, replac-
ing holes (e.g., �v) in S with the elements (e.g., v ∈ V) in
the correspond set could generate a WHILE-style statement
S′. We say v ∈ V fills �v , and S′ realizes S. A skeleton
S with n holes could be denoted as a characteristics vector
sS = 〈�1,�2, ...,�n〉. Thus, a statement S′ that realizes S
could be represented as a vector sS′ = 〈vi, fi, ci〉, where
vi ∈ V, fi ∈ F, and ci ∈ C. Let us consider a piece of “while”
statement in Fig. 5. Fig. 5(a) and Fig. 5(b) show two original
“while” statements, i.e., S1 and S2. Fig. 5(c) and Fig. 5(d)
are skeletons of S1 and S2, respectively. We can observe
that the two statements have the same skeletons. Let s be
the set of all elements that sequentially fill the holes in the
skeleton of a piece of statement. Thus, in Fig. 5, we have
sS1 = 〈a, b, b, a, func 1, b〉, where VS1 = 〈a, b〉 and FS1 =
〈func 1〉. Similarly, we have sS2 = 〈c, d, d, d, func 2, c〉,
where VS2 = 〈c, d〉 and FS2 = 〈func 2〉. The statement S1
can be transformed to S2 by replacing all the occurrences
of elements in VS1 and FS1 with the elements in VS2
and FS2, respectively. Thus, we have the renaming pairs
R = {〈a, c〉, 〈b, d〉, 〈a, d〉, 〈func 1, func 2〉, 〈b, c〉} that can
transform S1 to S2, and vice versa. Consequently, we con-
sider S1 and S2 as equivalent statements. Particularly, two
elements in a renaming pair should have the same property.
For example, in Fig. 5, the elements in a renaming pair 〈a,
c〉 are both variables with the same types; the elements in
the pair 〈func 1, func 2〉 are both function identifiers having
the same return type and the same number of parameters.
However, the matching conditions in a renaming pair could
also be relaxed when the types of variables are compatible
(e.g., variable type of Integer and Float). Similar to the
previous work [37], we define the statement equivalence as
below:
DEFINITION 2. (Statement Equivalence) Two statements S1

and S2 are equivalent, iff:
(1) Both S1 and S2 share the same skeletons;
(2) There exist renaming pairs that allow S1 to convert to
S2, and vice versa.

Equivalent statements exhibit the same control- and
data-dependencies information; there is no need to insert
all of them into the database. According to Definition 2,
we reject statements that are equivalent to the existing one
in our database. This increases the diversity of program
variants when performing the inserting operation.

4.2.3 Sources of Candidate Statements
We select two sources for extracting candidate statements,
including the Epiphron-generated test programs and the
regression test suites.

The Epiphron-generated test programs are a suitable
source as they can generate hundreds of statements contain-
ing different control- and data-flow. Moreover, the variables,
functions, labels, and user-defined types have the same
naming conventions, which can simplify the renaming pro-
cess during the inserting operation. Practically, we collect
10,000 Epiphron-generated programs and extract different
candidate statements from them. The candidate statements
range from a single line to a chunk of code. After the

Authorized licensed use limited to: Dalian University of Technology. Downloaded on March 31,2022 at 02:34:52 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3119186, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

1

TABLE 1
Syntax rules for the WHILE language

a ::=x | n | opu a | a1 opa a2
b ::=true | false | not b |

b1 opl b2 | a1 opr a2
S ::=x := a | S1;S2 |

while(b) do S |
if(b) then S1 else S2

TABLE 2
Syntax rules for variable

JaKv ::=�v | n | opu JaKv |Ja1Kv opa Ja2Kv
JbKv ::=true | false | not b |

Jb1Kv opl Jb2Kv |Ja1Kv opr Ja2Kv
JSKv ::=�v := JaKv |JS1Kv ; JS2Kv |

while(JbKv) do JSKv |
if(JbKv) then JS1Kv else JS2Kv

TABLE 3
Syntax rules for function

JaKf ::=�f | n | opu JaKf |Ja1Kf opa Ja2Kf
JbKf ::=true | false | not b |

Jb1Kf opl Jb2Kf |Ja1Kf opr Ja2Kf
JSKf ::=�v := JaKf |JS1Kf ; JS2Kf |

while(JbKf) do JSKf |
if(JbKf) then JS1Kf else JS2Kf

TABLE 4
Syntax rules for constant

JaKc ::= x |�c| opu JaKc|Ja1Kc opa Ja2Kc
JbKc ::=true | false | not b |

Jb1Kc opl Jb2Kc|Ja1Kc opr Ja2Kc
JSKc ::=x := JaKc|JS1Kc; JS2Kc|

while(JbKc) do JSKc|
if(JbKc) then JS1Kc else JS2Kc

(a) Syntax rules for variables

1

TABLE 1
Syntax rules for the WHILE language

a ::=x | n | opu a | a1 opa a2
b ::=true | false | not b |

b1 opl b2 | a1 opr a2
S ::=x := a | S1;S2 |

while(b) do S |
if(b) then S1 else S2

TABLE 2
Syntax rules for variable

JaKv ::=�v | n | opu JaKv |Ja1Kv opa Ja2Kv
JbKv ::=true | false | not b |

Jb1Kv opl Jb2Kv |Ja1Kv opr Ja2Kv
JSKv ::=�v := JaKv |JS1Kv ; JS2Kv |

while(JbKv) do JSKv |
if(JbKv) then JS1Kv else JS2Kv

TABLE 3
Syntax rules for function

JaKf ::=�f | n | opu JaKf |Ja1Kf opa Ja2Kf
JbKf ::=true | false | not b |

Jb1Kf opl Jb2Kf |Ja1Kf opr Ja2Kf
JSKf ::=�f := JaKf |JS1Kf ; JS2Kf |

while(JbKf) do JSKf |
if(JbKf) then JS1Kf else JS2Kf

TABLE 4
Syntax rules for constant

JaKc ::= x |�c| opu JaKc|Ja1Kc opa Ja2Kc
JbKc ::=true | false | not b |

Jb1Kc opl Jb2Kc|Ja1Kc opr Ja2Kc
JSKc ::=x := JaKc|JS1Kc; JS2Kc|

while(JbKc) do JSKc|
if(JbKc) then JS1Kc else JS2Kc

(b) Syntax rules for function references

1

TABLE 1
Syntax rules for the WHILE language

a ::=x | n | opu a | a1 opa a2
b ::=true | false | not b |

b1 opl b2 | a1 opr a2
S ::=x := a | S1;S2 |

while(b) do S |
if(b) then S1 else S2

TABLE 2
Syntax rules for variable

JaKv ::=�v | n | opu JaKv |Ja1Kv opa Ja2Kv
JbKv ::=true | false | not b |

Jb1Kv opl Jb2Kv |Ja1Kv opr Ja2Kv
JSKv ::=�v := JaKv |JS1Kv ; JS2Kv |

while(JbKv) do JSKv |
if(JbKv) then JS1Kv else JS2Kv

TABLE 3
Syntax rules for function

JaKf ::=�f | n | opu JaKf |Ja1Kf opa Ja2Kf
JbKf ::=true | false | not b |

Jb1Kf opl Jb2Kf |Ja1Kf opr Ja2Kf
JSKf ::=�f := JaKf |JS1Kf ; JS2Kf |

while(JbKf) do JSKf |
if(JbKf) then JS1Kf else JS2Kf

TABLE 4
Syntax rules for constant

JaKc ::= x |�c| opu JaKc|Ja1Kc opa Ja2Kc
JbKc ::=true | false | not b |

Jb1Kc opl Jb2Kc|Ja1Kc opr Ja2Kc
JSKc ::=x := JaKc|JS1Kc; JS2Kc|

while(JbKc) do JSKc|
if(JbKc) then JS1Kc else JS2Kc

(c) Syntax rules for constants

Fig. 4. Skeletal program structures for the WHILE-style language

/ / r e q u i r e d c o n t e x t / / r e q u i r e d c o n t e x t
a : i n t c : i n t
b : i n t d : i n t
func 1 : in t , 1 func 2 : in t , 1
/ / s t a t e m e n t / / s t a t e m e n t
while (a > b) while (c > d)
b = a + func 1 (b) d = d + func 2 (c)

(a) Statement S1 (b) Statement S2

while(�v > �v) while(�v > �v)
�v = �v +�f (�v) �v = �v +�f (�v)

(c) Skeleton of S1 (d) Skeleton of S2

Fig. 5. Example of program skeleton.

context extraction and duplicate statement elimination, our
database contains 25,200 pieces of candidate statements.

Compilers (e.g., GCC and Clang) have their own regres-
sion test suites maintained along with the development.
Thus, the regression test suites are also a convenient source
for testing compilers. However, several regression programs
are expected to trigger compiler bugs like crashes or other
code errors. We exclude programs that are not parsable and
crash compilers. Finally, we collect respectively 3,015 and
2,007 C programs from GCC 4.8 and Clang 3.9 test suite
when evaluating the corresponding compilers in our exper-
iments. Note that, if a test program triggers a regression
compiler bug, the test program is usually added to the test
suites in the next releases of the compiler. We find that
the regression test suites are helpful in generating various
warning-sensitive structures in program variants though the
number of candidate statements derived from the test suites
is tiny and limited. Consequently, there are more than 30,000
pieces of candidate statements in our database.

DIPROM is also capable of inserting real-world code into
programs. However, the real-world projects usually involve
multiple files and the structures could depend on other
structures in different files. Accordingly, it is a challenge
to parse the real-world projects and extract the required
context of the code. Therefore, we only select the seed test
programs and the regression test suites as the sources of
candidate statements in this paper.

4.3 Statement Renaming
Since most candidate statements have the same naming
conversion as the live programs, it is easy to select and
rename a candidate statement that is compatible with the
supplied context of the live program at the insertion point.
We prioritize renaming variables in the candidate statement
to those in the local context with the same type. If there are

many suitable variables in the local context, we randomly
select one and rename all occurrences of a variable to the
selected one. If not, we search the global context to find an
alternative. Similarly, we can rename the required function
or label in the candidate statements to a proper one that
satisfies the context of the insertion point. If there is no
alternative in the context of the live program, we re-select
a new candidate statement from our database until the
statement can be correctly inserted into the live program.

5 EXPERIMENTAL SETUP

In this section, we detail the settings for evaluating
DIPROM, including Research Questions (RQs), hardware
and compilers, comparative approaches, testing scenarios,
evaluation metrics, and experimental processes.

5.1 Research Questions
We address the following three research questions (RQs):

RQ1: How does DIPROM perform against the state-of-
the-art approaches in compiler warning testing?

We select three existing approaches (i.e., HiCOND,
Epiphron, and Hermes) to show the effectiveness of
DIPROM on detecting warning defects.

RQ2: How do the two mutation operations and the
diversity-guided mutation strategy influence the perfor-
mance of DIPROM on detecting warning defects?

We have implemented three variants of DIPROM (i.e.,
DIPROMprune, DIPROMinsert, and DIPROMrandom) to in-
vestigate the influences of two mutation operations and the
diversity-guided mutation strategy on detecting warning
defects.

RQ3: Can DIPROM detect warning defects on the
latest development versions of compilers?

To investigate the effectiveness of DIPROM in practice,
we have applied DIPROM on the latest development ver-
sions of GCC and Clang to detect new compiler warning
defects.

5.2 Hardware and Compiler
Our experiments are conducted on four PCs with Intel(R)
Core(TM) i7-4790 CPU @3.60GHz running Ubuntu 14.04
operating systems. In our study, we use GCC and Clang
as subjects, which are two popular and widely used C com-
pilers studied in the existing work [6], [10], [39], [40], [41].
More specifically, for RQ1 and RQ2, we test two versions
of GCC and two versions of Clang, i.e., GCC-4.8.5, GCC-
7.1.0, Clang-3.9.0, and Clang-7.0.0. These evaluated com-
pilers include both old release versions and recent release
versions of compilers. The reason is that the older releases

Authorized licensed use limited to: Dalian University of Technology. Downloaded on March 31,2022 at 02:34:52 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3119186, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

usually contain more compiler warning defects and give
more statistically significant results, while the recent releases
could check whether our approach still works well. For
RQ3, we conduct experiments on the latest development
versions of GCC and Clang5. This is because compiler devel-
opers usually enhance new compiler warning diagnostics
and prefer to fix bugs in the development trunk than in
stable versions, thus encourages us to investigate whether
DIPROM can detect warning defects on new releases.

5.3 Comparative Approach

To evaluate the effectiveness of DIPROM in RQ1, we com-
pare DIPROM with three comparative approaches, i.e.,
HiCOND [25], Epiphron [2], and Hermes [49]. HiCOND
could control the test program generator through a test
configuration, and then generates both bug-revealing and
diverse test programs [25]. Since not every program gener-
ator has features relevant to the options of test configura-
tions, we adopt the test configurations 6 provided by the
authors of HiCOND for a widely used C program generator
Csmith [10]. Epiphron is a state-of-the-art tool for compiler
warning testing. Epiphron is able to generate C test pro-
grams with undefined behaviors by unrolling the grammar
of the C language [2]. Hermes is a mutation based approach,
which generates a large number of semantically equivalent
program variants by inserting extra code into the existing
seed programs [49]. We select Hermes as a comparative
approach since both Hermes and DIPROM apply mutation
strategies on the live code regions to generate test programs.

To investigate whether the mutation operations and
the diversity-guided strategy contribute to DIPROM in
RQ2, we compare DIPROM with its three variants,
i.e., DIPROMprune , DIPROMinsert, and DIPROMrandom.
DIPROMprune employs the pruning operators to generate
program variants by pruning statements from test pro-
grams; DIPROMinsert only utilizes the inserting operators
to generate program variants; DIPROMrandom generates
program variants by randomly employing the mutation
operators without the guidance of priority scores. Notably,
we employ the same seeds and generate the same number
of variants under the same terminating condition for fair
comparisons.

5.4 Testing Scenario

We consider three widely used testing scenarios, i.e., cross-
compiler scenario (CCS), cross-version scenario (CVS), and
cross-optimization scenario (COS) [2], [42].

Cross-Compiler Scenario (CCS) discovers compiler
warning defects by comparing the warning diagnostics
emitted by independently developed compilers. GCC and
Clang are two reference compilers here. Both of them have
been developed for years by individual development com-
munities. In practice, for RQ1 and RQ2, we test GCC-
4.8.5 and GCC-7.1.0 using Clang-3.6.0 and Clang-4.0.0 as
references, respectively. We select these reference compilers

5. In practice, we mainly test four versions of the latest development
versions of GCC and Clang, including GCC-10.0.0-20190913, GCC-
10.0.0-20191020, GCC-10.0.0-20191110, and Clang-10.0.0.

6. https://github.com/JunjieChen/HiCOND

Algorithm 4: Compiler Warning Detection
Input: SP , Epiphron-generated seed test program

N , number of program variants
Mut, a list of mutators [Muti|i ∈ 1...63]

Output: WD , a set of compiler warning defects
1 Function WarnDetect(SeedProgram SP, VariantNum N,

Mutators Mut):WarningDefect WD:
2 WD ← ∅
3 while not termination do
4 PV ← GuidedGen(SP , N,Mut)
5 foreach PV ′ ∈ PV do
6 w ← compile(compiler under test, PV ′)
7 wlist← compile(reference compilers, PV ′)
8 (record, recordlist)← parsers(w,wlist)
9 foreach record′ ∈ recordlist do

10 (iw, iw′)← aligner(record, record′)
11 if (iw,iw’) is a real warning defect then
12 WD ←WD ∪ (iw, iw′)

13 return WD

because the release time of them are close to GCC-4.8.5 and
GCC-7.1.0, which are suitable for differentially testing the
compilers under test. Similarly, we test Clang-3.9.0 using
GCC-4.8.5 as a reference compiler and test Clang-7.0.0 by
referring to GCC-8.1.0. For RQ3, we use GCC-10.0.0 to test
Clang-10.0.0, and vice versa.

Cross-Version Scenario (CVS) exposes compiler warning
defects by comparing the warning diagnostics emitted from
different versions of a single compiler. In this strategy, for
RQ1 and RQ2, we test GCC-4.8.5 and GCC-7.1.0 using GCC-
4.7.0 and GCC-6.1.0 as reference compilers. Similarly, we
use Clang-3.6.0 and Clang-6.0.0 as reference compilers to
test Clang-3.9.0 and Clang-7.0.0, respectively. For RQ3, we
use GCC-8.1.0 and Clang-9.0.0 as reference compilers to test
GCC-10.0.0 and Clang-10.0.0, respectively.

Cross-Optimization Scenario (COS) detects compiler
warning defects by comparing the warning diagnostics
emitted from different optimization levels of a compiler.
For example, we can use GCC to compile a given program
without optimization (i.e., -O0) and compile the program
with an implemented optimization (i.e., -O1, -O2, -Os, or -
O3). In this study, we test GCC and Clang under a level of
optimization and use other levels as references.

CCS examines warning diagnostic flags between differ-
ent compilers and thus targets a large scope of warning
defects. CVS focuses on extended warning diagnostic flags
as the compiler upgrades, and COS aims at warning defects
across different optimization levels of a single compiler.
Each of them has a unique ability in finding compiler warn-
ings defects. Indeed, all of them detect compiler warning de-
fects which are shown in Subsection 6.1 and Subsection 6.2.

5.5 Experimental Process

In RQ1, we run DIPROM and three comparative approaches
(i.e.,HiCOND, Epiphron, and Hermes) 10 times for each
testing scenario (i.e., CCS, CVS, and COS); this setting is also
widely used in the evaluation of fuzzing testing [22], [23],
[24]. Notably, we install four compilers (i.e., two versions
of GCC and two versions of Clang) under test in different

Authorized licensed use limited to: Dalian University of Technology. Downloaded on March 31,2022 at 02:34:52 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3119186, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

PCs and thus each compiler is individually evaluated. For
each run, we evaluate them with a testing period of 72 CPU
hours. Besides, since we need to conduct 480 experiments
(DIPROM and three comparative approaches, 10 runs for
each compiler under three testing scenarios), we run many
experiments simultaneously in each PC so that we can finish
all experiments in nearly 60 days. For each experiment, we
collect the warning diagnostics emitted by the compiler
under test and the reference compilers when giving the
same test program as input. The program generator used in
HiCOND is Csmith as in the original paper of HiCOND [25].
We use the same Epiphron-generated programs as the seed
test programs in Hermes and DIPROM. In addition, the
number of generated program variants for each seed in
Hermes and HiCOND is identical (i.e., 8 in our experiments)
for fair comparisons. During the testing, we record each
warning defect and the time for detecting it. In addition,
we also record the number of valid test programs generated
by each approach for the further analysis.

In RQ2, we apply DIPROMprune, DIPROMinsert, and
DIPROMrandom to test the same compilers under the
same 72h testing period. Therefore, we need to conduct
360 experiments (three comparative approaches, 10 runs
for each compiler under three testing scenarios). To ef-
fectively utilize the CPU computation resources, we also
run many experiments simultaneously in each PC so that
we could finish the experiments in nearly 45 days. Dur-
ing each experiment, DIPROMprune, DIPROMinsert, and
DIPROMrandom are configured to generate the same num-
ber of program variants (i.e., 8 variants in our experiments)
for the same Epiphron-generated seed programs that are
used for DIPROM. During the test process, we also record
the number of valid test programs generated by each ap-
proach, each warning defect, and the time for detecting each
warning defect.

Finally, we run DIPROM for two months to the latest
development versions of GCC and Clang to evaluate the
effectiveness of DIPROM in RQ3. For each warning defect
detected by DIPROM, we check whether it is a new warning
defect that has never been discovered by developers. Sub-
sequently, we reduce the new warning defect by C-reduce
and submit a bug report to compiler developers.

We formally present the process of warning defect de-
tection in Algorithm 4. Generally, the function WarnDetect
consists of five steps. First, we use DIPROM to generate
valid program variants as the input of the compiler under
test and the reference compiler in Line 4. Second, for each
program variant, we collect a series of warning diagnos-
tics during the compilation of each compiler in Lines 5-
6. Third, a warning message parser is used to split the
warning diagnostics to a list of structured records in Line
8. The aligner is then employed to identify the inconsistent
warning diagnostics in Line 10. Finally, we check whether
the inconsistent warning diagnostic is a warning defect in
Lines 11-12. All experimental procedures are implemented
in python and shell script.

5.6 Evaluation Metric

We use two metrics to validate DIPROM and the compara-
tive approaches in RQ1 and RQ2.

The first metric is the number of warning defects de-
tected by each approach under different testing scenarios.
For each testing scenario, all approaches (i.e., DIPROM and
the comparative approaches) are individually employed
to detect compiler warning defects within a given testing
period. In our study, we check whether a detected warn-
ing defect is a real warning defect by two steps, namely
manual analysis and automatically finding correcting ver-
sions. Specifically, we first search bug reports about warning
defects from GCC Bugzilla7 and LLVM Bugzilla8 with the
keyword “diagnostics”. Notably, we exclude the bug reports
with the status “unconfirmed” for GCC and the status
“new” for LLVM since these bug reports have not been
confirmed by GCC and LLVM developers. We analyze the
behaviors of the warning defect which are described in the
bug reports. The behaviors of each warning defect include
the warning diagnostic flag, the warning message, and
the reason for the warning defect. We consider a warning
inconsistency defected by DIPROM and the comparative
approaches as a real warning defect if it has the same
behavior as the historical warning defect described in the
confirmed bug report. Otherwise, following the idea of the
Correcting Commits [6], we automatically check whether
the detected warning defect is fixed by a subsequent version
of the compiler under test. This is because compilers are
also tested by compiler developers themselves, and the
warning defects may be fixed by them without submitting
bug reports. If one subsequent commit does not trigger the
same warning inconsistency given the same test program as
input, we consider the warning inconsistency as a compiler
defect, and the corresponding commit fixes this warning
defect. Specifically, for two warning defects, if they have the
same warning diagnostic flags and the same type of warning
defect (i.e., the erroneous warning, the spurious warning,
and the missing warning), we treat them as duplicates.

The second metric is the detection time spent on discov-
ering each warning defect. In our experiment, the detection
time mainly includes the time for seed program generation,
the mutation time, the execution time, and the alignment
time. The time for seed program generation refers to the
time required by Epiphron to generate seed test programs.
Mutation time refers to the time spent on generating pro-
gram variants. Execution time is the time that compilers
compile the program variant and emit the warning diag-
nostics. Alignment time denotes the time of aligning the
warning diagnostics among different compilers and iden-
tifying the inconsistent warnings. This metric reflects the
performance of DIPROM and the comparative approaches.

6 EXPERIMENTAL RESULTS

6.1 Answer to RQ1: Baseline Approaches Comparison

We analyze the effectiveness and efficiency of DIPROM
compared with three comparative approaches from two
aspects, including the number of detected warning defects
and the time spent on detecting warning defects.

7. https://gcc.gnu.org/bugzilla/
8. https://bugs.llvm.org/

Authorized licensed use limited to: Dalian University of Technology. Downloaded on March 31,2022 at 02:34:52 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3119186, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

TABLE 3
Number of detected warning defects in different testing scenarios for DIPROM and the comparative approaches

Subject Scenario
DIPROM HiCOND Epiphron Hermes

#Avg. #TP. #Avg. imp. #TP. P-value Effect #Avg. imp. #TP. P-value Effect #Avg. imp. #TP. P-value Effect
bugs (*103) bugs (*103) size bugs (*103) size bugs (*103) size

GCC-4.8.5
CCS 25.2 53.39 12.5 101.60% 63.49 <0.001 1.000 16.5 52.73% 63.75 <0.001 1.000 20.8 21.15% 54.29 <0.001 1.000
CVS 19.9 52.67 10.2 95.10% 53.55 <0.001 1.000 15.5 28.39% 60.98 <0.001 1.000 16.1 23.60% 53.45 <0.001 1.000
COS 4.8 17.11 3.3 45.45% 17.48 <0.001 0.960 3.6 33.33% 19.22 <0.001 0.920 3.9 23.08% 21.74 0.004 0.830

GCC-7.1.0
CCS 13.9 60.54 7.3 90.41% 68.64 <0.001 1.000 10.9 27.52% 70.78 <0.001 1.000 12.0 15.83% 61.95 0.004 0.855
CVS 7.9 57.69 4.9 61.22% 65.85 <0.001 1.000 6.4 23.44% 68.04 <0.001 0.925 6.6 19.70% 60.21 0.002 0.870
COS 3.8 23.72 2.6 46.15% 25.84 0.002 0.860 2.8 35.71% 26.61 0.003 0.845 3.2 18.75% 23.31 0.016 0.750

Clang-3.9.0 CCS 13.1 51.15 8.7 50.57% 59.42 <0.001 1.000 9.9 32.32% 60.21 <0.001 1.000 11.5 13.91% 52.66 <0.001 0.950
CVS 6.3 51.60 4.1 53.66% 58.61 <0.001 0.980 4.8 31.25% 60.32 <0.001 0.935 5.3 18.87% 51.57 0.002 0.860

Clang-7.0.0 CCS 6.9 54.89 4.0 72.50% 62.65 <0.001 1.000 5.4 27.78% 63.50 <0.001 0.975 6.2 11.29% 55.28 0.001 0.850
Total 101.8 422.76 57.6 76.74% 475.53 - - 75.8 34.30% 493.41 - - 85.6 18.93% 434.46 - -

(b) (c) (d) (e)

(f) (g) (h) (i) (j)

(a)

Fig. 6. Time spent on detecting warning defects for DIPROM and the comparative approaches.

6.1.1 Number of Detected Warning Defects

Table 3 shows the average number of detected warning
defects discovered by DIPROM and the comparative ap-
proaches in 10 runs. The first column is the compiler un-
der test and the second column is the testing scenario for
each compiler. Regarding each approach, we present the
average number of warning defects (i.e., #Avg. bugs) and
the average number of valid test programs (i.e., #TP.) in
the following columns. We also show the improvement (i.e.,
imp.) of DIPROM over the baselines (i.e., three comparative
approaches) in terms of the average number of warning
defects, i.e., imp = (DIPROM−baseline)/baseline∗100%.
Notably, we do not present the results of Clang-3.9.0 in COS
and Clang-7.0.0 in both CVS and COS since there is no
warning defect discovered by DIPROM and the compara-
tive approaches during the given testing period.

From Table 3, we can see that DIPROM significantly
outperforms the comparative approaches in terms of the
bug-finding capability. Across all the experiments, the sum
of the average numbers of warning defects triggered by
DIPROM is 101.8, which outperforms HiCOND (i.e., 57.6),
Epiphron (i.e., 75.8), and Hermes (i.e., 85.6) by 76.74%,
34.30%, and 18.93%, respectively. Specifically, we could

observe that DIPROM detects more warning defects than
HiCOND by 45.45%∼101.60% (column imp. of HiCOND).
This is because the test programs generated by HiCOND are
free from the undefined behaviors, which may have a small
probability of triggering compiler warning diagnostics.
Therefore, although HiCOND generates more test programs
than DIPROM, HiCOND performs worse than DIPROM.
In addition, DIPROM detects 23.44%∼52.73% more warn-
ing defects than Epiphron (column imp. of Epiphron). The
reason may be that Epiphron generates test programs ac-
cording to a set of randomly selected language grammars,
which rarely considers how to construct diverse warning-
sensitive structures in the generated test programs. Besides,
we can see that DIPROM outperforms Hermes on detecting
compiler warning defects, which achieves 11.29%∼23.60%
improvements. Although Hermes employs the mutation
strategy to generate program variants leveraging the same
Epiphron-generated test programs as seeds, all the program
variants generated by Hermes are enforced to be semanti-
cally equivalent to the seed program. Therefore, the control-
and data- dependencies in the variants cannot be varied,
which may be not capable of thoroughly testing compiler
warnings. Interestingly, from Table 3, we can observe that

Authorized licensed use limited to: Dalian University of Technology. Downloaded on March 31,2022 at 02:34:52 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3119186, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

although DIPROM generates the minimum number of valid
test programs, it can construct diverse warning-sensitive test
programs triggering a relatively large number of warning
diagnostics flags. Accordingly, DIPROM could detect more
warning defects than other comparative approaches.

In addition, we conduct the Mann-Whitney U-test [29]
with a level of significance 0.05 on the number of detected
warning defects between DIPROM and the comparative
approaches. The P-value (p<0.05) in Table 3 shows that
DIPROM performs significantly better than comparative
approaches. Furthermore, we also calculate the effect size of
the differences between DIPROM and the comparative ap-
proaches using the Vargha and Delaneys A12 statistics9 [29].
If the effect of DIPROM is small compared to other ap-
proaches, then A12 < 0.5; otherwise, A12 > 0.5. From
Table 3, we can observe that almost all the effect sizes are
greater than 0.8, which indicates that DIPROM has a higher
probability of obtaining better results than the comparative
approaches. Particularly, the values of effect size for the
comparative approaches in CCS and CVS of GCC-4.8.5 are
1.000. This indicates that the numbers of warning defects
discovered by DIPROM during 10 runs are larger than those
detected by comparative approaches.

At last, we analyze the effectiveness of DIPROM in dif-
ferent testing scenarios and different versions of compilers
according to Table 3. Regarding the different testing scenar-
ios, we find that DIPROM always has better performance
in CCS. For example, in GCC-4.8.5, DIPROM detects an
average number of 25.2 warning defects in CCS, whereas
DIPROM only detects 19.9 and 4.8 warning defects on
average in CVS and COS, respectively. Particularly, there
is no warning defect detected by any of the approaches
in COS of Clang-3.9.0 and Clang-7.0.0. This indicates that
DIPROM has a higher ability to detect compiler warning
defects in the CCS of differential testing. Regarding the dif-
ferent versions of compilers, we can observe that DIPROM
detects more warning defects in the older release versions
of compilers than in the recent releases. This phenomenon
has been already demonstrated in the prior work [25], [28]
that the old releases usually contain more compiler bugs
than the recent release versions. Even so, we detect an
average total number of 25.6 and 6.9 warning defects in
GCC-7.1.0 and Clang-7.0.0, respectively, which is larger than
those detected by other comparative approaches. This also
indicates that DIPROM has a broad capability of detecting
compiler warning defects in different versions of compilers.

6.1.2 Time Spent on Detecting Warning Defects
Fig. 6(a)-(i) presents the time spent on detecting warning
defects for DIPROM, HiCOND, Epiphron, and Hermes in
different testing scenarios. Fig. 6(j) presents the overall re-
sults for different approaches. We can observe that DIPROM
obviously outperforms comparative approaches in most
testing scenarios for both GCC and Clang. For example,
from Fig. 6(j), we can see that the average number of
warning defects detected by DIPROM is 10.9 during 105

seconds, which is larger than those detected by HiCOND
(i.e., 6.0), Epiphron (i.e., 7.9), and Hermes (i.e., 9.4) during

9. We use the open source code shared by Tim Menzies to calculate
A12, https://github.com/txt/ase16/blob/master/doc/stats.md.

the same testing period, achieving 81.67%, 37.97%, and
15.96% improvements, respectively. Particularly, in Fig. 6(b),
DIPROM could detect an average number of 12.7 warning
defects during 103 seconds, whereas HiCOND, Epiphron,
and Hermes only detect 5.2, 8.7, and 9.6 warning defects
in the same testing period, respectively. In addition, when
detecting the same number of warning defects, DIPROM
spends less time than the comparative approaches. From
Fig. 6(j), we can observe that DIPROM only spends 103

seconds in detecting an average number of 5.7 warning
defects, whereas HiCOND spends nearly 2 magnitudes of
the time on detecting the same number of warning defects. It
is important and beneficial to detect warning defects earlier
because the development resources are always limited and
required to find warning defects as soon as possible. Thus,
DIPROM is efficient in detecting compiler warning defects.

6.2 Answer to RQ2: Influences of Mutation Operators
and Diversity-guided Mutation Strategy

This RQ analyzes the influences of different mutation oper-
ators and the diversity-guided mutation strategy.

6.2.1 Number of Detected Warning Defects
Table 4 shows the average number of warning defects
discovered by DIPROM and its variants in 10 runs. For
each approach, we present the average number of warning
defected (i.e., #Avg. bugs) and the average number of valid
test programs (i.e., #TP.) in Table 4. Besides, we show the
improvement (i.e., imp.) of DIPROM over its three variants
on the average number of warning defects and the statistics
results of Mann-Whitney U-test [29] for each run. Note that,
we do not present the results of Clang-3.9.0 in COS and
Clang-7.0.0 in both CVS and COS since there is no warning
defect discovered by any of the approaches during the given
testing period.

From Table 4, we can see that DIPROM detects more
warning defects than its variants. Across all the experi-
ments, the sum of the average numbers of warning de-
fects detected by DIPROM is 101.8, whereas DIPROMprune,
DIPROMinsert, and DIPROMrandom detect 79.4, 89.5, and
93.0 warning defects, achieving 28.21%, 13.74%, and 9.46%
improvements, respectively. Specifically, from the columns
imp. of DIPROMprune and DIPROMinsert in Table 4, we
can observe that DIPROM detects more warning defects
than DIPROMprune and DIPROMinsert by 15.93%∼50.00%
and 9.52%∼23.08%, respectively. The reason may be that
DIPROM integrated two operations would generate more
warning-sensitive structures than a single operation. In
practice, the effectiveness of DIPROMinsert on detecting
warning defects is better than DIPROMprune. This indi-
cates that inserting additional code may construct more
warning-sensitive structures than pruning code from the
test programs. Furthermore, we can also observe that
DIPROM detects 7.38%∼17.07% more warning defects than
DIPROMrandom. This indicates that the diversity-guided
mutation in DIPROM brings a positive effort to help de-
tect compiler warning defects. Indeed, the performance of
DIPROMrandom is limited due to the random selection of the
mutators during each mutation process. If DIPROMrandom

frequently employs a mutator that could result in program

Authorized licensed use limited to: Dalian University of Technology. Downloaded on March 31,2022 at 02:34:52 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3119186, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

TABLE 4
Number of detected warning defects in different testing scenarios for DIPROM and the its variants

Subject Scenario
DIPROM DIPROMprune DIPROMinsert DIPROMrandom

#Avg. #TP. #Avg. imp. #TP. P-value Effect #Avg. imp. #TP. P-value Effect #Avg. imp. #TP. P-value Effect
bugs (*103) bugs (*103) size bugs (*103) size bugs (*103) size

GCC-4.8.5
CCS 25.2 53.39 16.8 50.00% 56.13 <0.001 1.000 22.7 11.01% 50.23 <0.001 1.000 23.3 8.15% 52.64 0.002 0.870
CVS 19.9 52.67 15.7 26.75% 54.18 <0.001 1.000 17.3 15.03% 49.89 <0.001 0.940 18.5 7.57% 52.18 0.001 0.870
COS 4.8 17.11 3.8 26.32% 17.26 <0.001 0.920 3.9 23.08% 16.71 0.001 0.870 4.1 17.07% 16.70 0.012 0.770

GCC-7.1.0
CCS 13.9 60.54 11.5 20.87% 64.47 0.001 0.905 12.4 12.10% 57.26 0.006 0.803 12.8 8.59% 59.83 0.019 0.770
CVS 7.9 57.69 6.6 19.70% 57.88 0.001 0.910 6.9 14.49% 55.67 0.007 0.815 7.0 12.85% 58.04 0.015 0.775
COS 3.8 23.72 2.9 31.03% 25.63 0.001 0.865 3.2 18.75% 22.53 0.016 0.750 3.3 15.15% 23.25 0.045 0.700

Clang-3.9.0 CCS 13.1 51.15 11.3 15.93% 53.22 <0.001 0.940 11.6 12.93% 49.60 <0.001 0.940 12.2 7.38% 51.06 0.013 0.780
CVS 6.3 51.60 4.9 28.57% 52.09 <0.001 0.930 5.2 21.15% 48.76 0.001 0.890 5.4 16.67% 49.83 0.018 0.765

Clang-7.0.0 CCS 6.9 54.89 5.9 16.95% 58.12 <0.001 0.970 6.3 9.52% 51.70 0.012 0.755 6.4 7.81% 54.07 0.013 0.750
Total 101.8 422.76 79.4 28.21% 438.98 - - 89.5 13.74% 402.35 - - 93.0 9.46% 417.60 - -

errors or the same warning-sensitive structures, there may
be a small probability of triggering different warning de-
fects.

To further analyze the reason why DIPROM outperforms
DIPROMrandom, we calculate the average program distance
according to Formula 1 among program variants generated
by DIPROM and DIPROMrandom for GCC-4.8.5 and Clang-
3.9.0, respectively. The results are presented in Fig. 7, where
the violin plots show the density of the program distance,
and the box plots show the median and interquartile ranges.
From the violin plots in Fig. 7, we can observe that the
program distance values for DIPROM are distributed rel-
atively more dispersive than those for DIPROMrandom. This
indicates that DIPROM could generate program variants
that are vastly different from the existing ones to some
degree. In addition, from Fig. 7, we find that the median
values achieved by DIPROM are larger than those achieved
by DIPROMrandom in both GCC-4.8.5 and Clang-3.9.0. For
example, in Clang-3.9.0, the median program distance of
program variants generated by DIPROM is 0.37, while it
is 0.32 for DIPROMrandom, achieving 15.63% improvement.
This illustrates that DIPROM would have a higher prob-
ability to generate diverse program variants for compiler
warning testing. Furthermore, we conduct Spearman cor-
relation analysis [30] to explore the correlation between
the diversity of program variants generated by DIPROM
and DIPROMrandom and the number of warning defects
triggered by them. Spearman correlation is a widely used
statistics method which is robust to non-normally dis-
tributed data [31], [32]. Notably, we use the average program
distance to measure the diversity of all the program vari-
ants generated by each approach. The Spearman correlation
analysis is conducted between the average program distance
and the number of detected compiler warning defects for
GCC-4.8.5 or Clang-3.9.0 in each run. We find that the Spear-
man correlation coefficient is 0.636 in GCC-4.8.5 (with p-
value=0.001) and 0.625 in Clang-3.9.0 (with p-value=0.002).
This means that there is a positive correlation between the
diversity of program variants and the number of detected
compiler warning defects.

In Table 4, the Mann-Whitney U-test confirms that
DIPROM performs better than its variants (p<0.05). Besides,
we conduct the A12 statistics on the number of detected
warning defects. From Table 4, we can observe that al-
most all the effect sizes among DIPROM, DIPROMprune,

Fig. 7. Comparison of the diversity of test programs generated by
DIPROM and DIPROMrandom.

DIPROMinsert, and DIPROMrandom are greater than 0.5,
which indicates that DIPROM has a relatively higher prob-
ability of obtaining better results than its variants. Note
that, although the absolute difference between DIPROM and
DIPROMrandom is not larger in several testing scenarios
on detecting warning defects, DIPROM is still effective via
diversity-guided mutation from the statistical analysis.

6.2.2 Time Spent on Detecting Warning Defects
Fig. 8(a)-(i) presents the time spent on detecting warning
defects in each testing scenario for DIPROM and its variants.
Fig. 8(j) shows the overall results. From Fig. 8, we can
observe that DIPROM outperforms its variants on detecting
the average number of warning defects in almost all the
testing scenarios of GCC and Clang. For example, from the
overall results in Fig. 8(j), we can see that DIPROM detects
an average number of 9.0 warning defects during 104 sec-
onds, which is larger than that detected by DIPROMprune

(i.e., 6.7), DIPROMinsert (i.e., 7.8), and DIPROMrandom (i.e.,
8.0) during the same testing period, achieving 34.33%,
15.38%, and 12.50% improvements, respectively. Particu-
larly, in Fig. 8(a), DIPROM detects 23.4 warning defects
on average during 105 seconds, whereas DIPROMprune,
DIPROMinsert, and DIPROMrandom only detect an average
of 15.2, 20.8, and 21.6 warning defects during the same
testing period, respectively. In addition, DIPROM spends
less time than its variants in detecting the same number of
warning defects. In Fig. 8(j), DIPROM detects an average of

Authorized licensed use limited to: Dalian University of Technology. Downloaded on March 31,2022 at 02:34:52 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3119186, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 8. Time spent on detecting warning defects for DIPROM and its variants.

TABLE 5
Information of reported warning defects

GCC Clang Total
Confirmed 4 1 5

Pending 0 1 1
Duplicate 1 0 1

Suspended 1 0 1
Reported 6 2 8

9.0 warning defects within the testing period of 104 seconds,
whereas DIPROMprune spends nearly 2 magnitudes of the
time on detecting the same number of warning defects.
Therefore, DIPROM is efficient in detecting compiler warn-
ing defects than its variants.

6.3 Answer to RQ3: New Warning Defects Discovering
6.3.1 Detected warning defects
Table 5 summarizes all the detected warning defects for the
latest development versions of compilers we reported so
far. In two months, we have reported 8 warning defects,
of which 5 have been confirmed by developers. There is
still a warning defect pending developers’ responses. Note
that, since many compiler bugs have been fixed in the latest
development versions of GCC and Clang, it is not easy
to detect new compiler warning defects in the developed
versions of compilers. Despite that, it is still worthy of
detecting new warning defects in the development version
to ensure the quality of compiler warning diagnostics.

Table 6 details all the confirmed compiler defects, includ-
ing the defect id, the warning diagnostic flag, the priority
of warning defects, the current status, the defect type, the
strategy of differential testing, and the affected compiler
version. Priority indicates the order in which warning de-
fects should be fixed by developers, ranging from P1 to P5.
P1 is the highest level and defects in this level should be

1 / / f i l e = s . c
2 typedef i n t abc ;
3 s t a t i c abc * const f1 (void) ; / / wrong l o c a t i o n

Clang 10 outputs :
s . c : 3 : 1 8 : warning : ’ const ’ type q u a l i f i e r on

return type has no e f f e c t [−Wignored−
q u a l i f i e r s]

3 | s t a t i c i n t 3 2 t * const f1 (void) ;

Fig. 9. GCC erroneous warning defect #92392 (https :
//gcc.gnu.org/bugzilla/showbug.cgi?id = 92392).

fixed soon. As shown in Table 6, all the confirmed defects
are labeled with the default priority P3 and none of them
is demoted to either P4 or P5. Defect types are categorized
into two classes, i.e., the missing warning and the erroneous
warning. From Table 6, we can observe that three confirmed
warning defects are missing warnings and one of them is
fixed by developers. Strategy refers to the testing scenarios
used to detect the corresponding warning defects, including
CCS, CSV, and COS.

6.3.2 Confirmed defects samples

GCC warning defect #92392. Fig. 9 shows a GCC er-
roneous warning defect discovered by CCS. GCC emits
a wrong warning column for Line 3 that the return type
qualifiers “abc” is ignored on function return. However, the
“const” type qualifier has no effect in the static function and
Clang exactly outputs the warning location. As a result, this
is probably a problem of keeping track of the qualifiers in
GCC.

GCC warning defect #92378. Fig. 10 is a missing warn-
ing of GCC. GCC is expected to emit a warning indicating
that the array subscript of a[3] is above array bounds in Line

Authorized licensed use limited to: Dalian University of Technology. Downloaded on March 31,2022 at 02:34:52 UTC from IEEE Xplore. Restrictions apply.

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92392
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92392

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3119186, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 18

TABLE 6
Confirmed warning defects

Number Defect Id Warning Diagnostic Flag Priority Status Defect Type Strategy Affected Version
1 GCC-92209 Wstrict-prototypes P3 Confirmed Erroneous CCS GCC-10.0.0
2 GCC-92210 Wfor-loop-analysis P3 Confirmed Missing CCS GCC-10.0.0
3 GCC-92378 Warray-bounds P3 Fixed Missing COS GCC-10.0.0
4 GCC-92392 Wignored-qualifiers P3 Confirmed Erroneous CCS GCC-10.0.0
5 Clang-43573 Wtautological-compare P3 Confirmed Missing CCS Clang-10.0.0

1 / / f i l e = s . c
2 # include <s t d i o . h>
3 i n t main () {
4 i n t a [1] ={0} ;
5 p r i n t f (”%d” , a [3]) ; / / no warning h e r e
6 }

Clang 10 outputs :
s . c : 5 : 1 6 : warning : array index 3 i s past the end

of the array (which conta ins 1 element) [−
Warray−bounds]

5 | p r i n t f (”%d” , a [3]) ;

Fig. 10. GCC missing warning defect #92378 (https :
//gcc.gnu.org/bugzilla/showbug.cgi?id = 92378).

1 / / f i l e = s . c
2 i n t main () {
3 i n t a ;
4 i n t b = (0 ! = ((− 1) | ((a =1) ==1))) ; / / no warning h e r e
5 return 0 ;
6 }

GCC 10 outputs :
s . c : 4 : 1 2 : warning : b i twi se comparison always

eva luates to t rue [− Wtautological −compare]
4 | i n t b = (0 ! = ((− 1) | ((c = 1) == 1))) ;

Fig. 11. Clang missing warning defect #92479 (https :
//bugs.llvm.org/showbug.cgi?id = 92479).

5. However, no warning is emitted when GCC compiles it
with an optimization level (i.e., -O1/O2/O3).

Clang warning defect #92479. Fig. 11 shows a missing-
warning defect of Clang. On Line 4, Clang misses the
warning of bitwise comparison for the left operand “-1” in
the bitwise inclusive OR operator “|”; whereas GCC warns
in this situation to help developers examine the semantics
of the statement. However, Clang only explicitly checks the
value from the IntegerLiteral AST node that ignores the
corresponding bits in the operand.

6.3.3 Pending Warning Defect

Clang warning defect #43647. This is a missing-warning
defect as shown in Fig. 12. GCC emits a warning indicating
that “the comparison will always evaluate as ‘false’ for
the address of ‘a’ will never be NULL”. Developers could
check the code carefully whether it is correct to specify the
address of a point instead of the point itself. In contrast,
Clang overlooks this warning leaving the questionable code
undiscovered.

1 / / f i l e = s . c
2 i n t main () {
3 i n t * a = (void *) 0 ;
4 i n t b = (&a) == ((void *) 0) ; / / no warning h e r e
5 return b ;
6 }

GCC 10 outputs :
s . c : 4 : 1 6 : warning : the comparison w i l l always

evaluate as ’ f a l s e ’ f o r the address of ’ a ’
w i l l never be NULL [−Waddress]

4 | i n t b = (&a) == ((void *) 0) ;

Fig. 12. Clang pending warning defect #43647(https :
//bugs.llvm.org/showbug.cgi?id = 43647).

7 THREATS TO VALIDITY

7.1 Threats to Internal Validity

The threats to internal validity mainly lie in three aspects.
First, as a heuristic algorithm, we set several probabilities
in DIPROM to mutate the AST of the test program. For
example, when applying the mutation operator on AST, we
mutate a parent node or a leaf node based on the probability
of 50%. These probabilities may influence the effectiveness
of DIPROM. However, to ensure the generality of DIPROM,
we set the same probabilities when applying the mutation
processes. Second, we identify compiler warning defects in
our experiments by both manually analyzing the existing
bug reports and automatically checking the correcting ver-
sions. However, there is a threat to introduce false positives
in these two approaches. To alleviate this threat, all the
detected warning defects are checked by two authors of this
paper and the results must be agreed by these two authors.
Third, we do not compare DIPROM with the baselines on
the latest development versions of GCC and Clang. This is
because the latest development versions usually contain a
small number of compiler bugs, which could not obtain sta-
tistically significant results in the evaluation. To reduce this
threat, we conduct experiments over two recent versions of
GCC and Clang, i.e., GCC-7.1.0 and Clang-7.0.0. The results
also indicate that DIPROM is effective in detecting compiler
warning defects.

7.2 Threats to External Validity

The threats to external validity mainly lie in the subjects
and the seed programs. Subjects refer to the compilers we
selected for evaluation and the seed programs are the test
programs generated by program generation tools, such as
Epiphron and Csmith.

Authorized licensed use limited to: Dalian University of Technology. Downloaded on March 31,2022 at 02:34:52 UTC from IEEE Xplore. Restrictions apply.

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92378
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92378
https://bugs.llvm.org/show_bug.cgi?id=92479
https://bugs.llvm.org/show_bug.cgi?id=92479
https://bugs.llvm.org/show_bug.cgi?id=43647
https://bugs.llvm.org/show_bug.cgi?id=43647

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3119186, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 19

In our experiments, we only used four versions of GCC
compilers and LLVM compiler as subjects, including two
older releases and two recent releases. These subjects may
not be representative enough for other compilers. It is still
unknown whether our approaches could be generalized to
other C compilers. In the future, we will apply DIPROM to
different compilers for compiler warning testing.

Although there exist several test program generators [2],
[10], DIPROM employs Epiphron-generated test programs
as the seeds. To reduce the threat from the seed program, we
randomly generate a series of seed programs by Epiphron
and use the same seeds to evaluate DIPROM and other
comparative approaches, rather than selecting a set of repre-
sentative and diverse seed programs. This also indicates that
our approach indeed increases the diversity of structures in
test programs.

8 RELATED WORK

In this section, we introduce the related work to the com-
piler testing. In general, the process of compiler testing
consists of three main aspects, i.e., test program generation
(Section 8.1), test oracle construction (Section 8.2), and test
program reduction (Section 8.3).

8.1 Test Program Generation

In the area of compiler testing, test program generation is
the initial and the most crucial issue as compilers require a
large number of sophisticated test programs as inputs [6],
[43], [44], [45]. Our work also targets this issue. Besides the
manually constructed validation suites (e.g., Plum Hall [46],
SuperTest [47], and Perennial [48]), the main techniques
for test program generation can be broadly categorized as
grammar based program generation and mutation based
program generation.

The grammar based program generation focuses on
automatically generating massive test programs to com-
prehensively test compilers [42]. The notable efforts are
Csmith [10], HiCOND [25], and Epiphron [2]. All of them
are evaluated to be effective in finding bugs in mature com-
pilers. Csmith generates random test programs by defining
and sampling a probabilistic grammar of the C program-
ming language. It has been applied to find hundreds of bugs
in GCC and Clang via differential testing. HiCOND could
produce a set of configurations for Csmith, and thus gener-
ates diverse test programs for compiler testing. Epiphron
generates massive test programs based on a set of ran-
domly selected language grammars. Since Epiphron aims at
compiler warning testing, it intentionally inserts warning-
free bodies into the generated programs. Although we also
focus on detecting compiler warning defects, DIPROM is a
mutation based approach, which is different from Csmith,
HiCOND, and Epiphron.

The mutation based program generation targets mod-
ifying existing test programs. The most representative
mutation based approach is Equivalence Modulo Inputs
(EMI) [20]. Starting with a seed test program, EMI deletes
or inserts code in the code regions to make the mutated
programs preserve the original semantics w.r.t. the inputs.
EMI has three instantiations, i.e., Orion [20], Athena [36],

and Hermes [49]. Orion deletes dead code regions of test
programs randomly and Athena inserts code into and re-
moves code from dead code regions. Hermes complements
the two tools above, which performs mutations on both
dead and live code regions to derive semantically equivalent
valid variants from existing test programs.

Our work is different from them in three aspects. First,
Orion and Athena generate syntactically equivalent pro-
gram variants by pruning or inserting unexecuted state-
ments (i.e., dead code). They may not construct warning-
sensitive structures in the live code. However, compiler
warning diagnostics on the dead code are usually ignored
by compilers’ developers [2]. Therefore, they are not suitable
for compiler warning testing. In contrast, DIPROM mutates
the live code of test programs to construct warning-sensitive
structures in the program variants. Second, although Her-
mes can insert code in the live code regions, the gener-
ated program variants must maintain the EMI (Equivalence
Modulo Inputs) property. That is, all the program variants
generated by Hermes are enforced to be semantically equiv-
alent to the seed program. Therefore, the control- and data-
dependencies of the variants cannot be varied, which may
be not capable of thoroughly testing compiler warnings. Dif-
ferent from Hermes, DIPROM attempts to generate program
variants with different control- and data- dependencies such
that these variants are different from the seed and existing
variants. Third, both Orion and Hermes mutate the seed test
program randomly, while DIPROM is a diversity-guided
mutation approach.

Recently, Chen et al. [50], [51] proposed two non-
semantics-preserving mutations for testing JVM implemen-
tations, i.e., classfuzz and classming. Classfuzz tests JVM’s
startup processes by altering classfiles via 129 mutators, and
leverages MCMC sampling to guide the mutator selection.
The selection of each mutator is based on the success rate
of that mutator on generating representative test programs.
After that, classfuzz applies the selected mutator to gener-
ate a program variant, and determines whether to accept
or reject the program variant according to the coverage
uniqueness of a JVM when executing the program variant.
Classming aims at testing JVM’s execution engines based on
hooking instruction insertions/deletions. After the mutation
process, classming employs the Metropolis algorithm to
determine whether to accept a program variant using the
seed coverage as the discipline in the Metropolis choice.

Although both classfuzz and classming utilize the
MCMC-guided strategy during the mutation process,
DIPROM is different from them in three aspects. First,
both classming and classfuzz generate serialized program
variants using Markov Chains, whereas DIPROM constructs
each program variant based on the initial seed test program,
i.e., the i-th program variant is independent of the (i-1)-
th program variant. Second, despite that both classfuzz
and DIPROM employ the Metropolis algorithm for mutator
selection, the ranking of mutator scores in the Metropolis
choice of classfuzz only depends on the success rate of
each mutator, whereas DIPROM designs a more complex
priority metric (i.e., Formula 4) to rank these mutators.
Third, DIPROM accepts a program variant when it is com-
pilable, whereas classming utilizes the Metropolis algorithm
to accept a program variant and treats the seed coverage

Authorized licensed use limited to: Dalian University of Technology. Downloaded on March 31,2022 at 02:34:52 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3119186, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 20

TABLE 7
Technical comparison among DIPROM, classming, classfuzz, and Hermes

Technical
difference DIPROM classming classfuzz Hermes

General process Iterative mutation Iterative mutation Iterative mutation Random mutation

Mutation
objective

The generated program
variant is compilable and

diverse from existing
program variants.

The generated bytecode file
is live and diverse from its

seed.

The generated bytecode file
is diverse from its seed.

The generated program
variant is semantically
equivalent to its seed.

Type of seed C source code Java bytecode file Java bytecode file C source code

Mutators

63 mutators for altering
both the syntax and

control- and data-flows in
the seed

5 Inserting/deleting
hooking instructions for

altering control- and
data-flows in the seed

129 mutators for altering
Java bytecode syntactically

Inserting three types of
EMI snippets (FCB, TG,

and TCB)

Mutator
selection

Mutator is guided by both
the program distance and

the success rate.

Mutator is randomly
selected.

Mutator is guided by the
success rate.

Mutator is randomly
selected.

Mutated
regions Live code regions Live bytecode Entire bytecode Entire code regions

Mutant
acceptance

Mutant is compilable and
different from existing

program variants.

Mutant has high seed
coverage and is different

from the seed.

Mutant is different from the
seed.

Mutant is an EMI mutant
of the seed.

Test subjects C compilers JVMs’ verifiers and
execution engines JVMs’ startup processes C compilers

information as a discipline in the Metropolis choice.
In addition, Table 7 provides a detailed comparison

among DIPROM, Hermes, classfuzz, and classming. Clearly,
the four approaches take their respective strategies and
follow their respective processes to generate program mu-
tants. Regarding the compiler warning diagnostics, abun-
dant compilable and diverse test programs are more suitable
for triggering compiler warning defects. To the best of our
knowledge, DIPROM is the first effort leveraging mutation
based approach to generate programs for this purpose.

8.2 Test Oracle Construction
Test oracle issue is a long-term challenge in compiler testing,
since it is difficult to determine whether the actual output
of the compiler under test is as expected or not given a test
program. In the literature, many technologies of compiler
testing has been proposed to mitigate this issue, which fall
into three categories, i.e., Randomized Differential Testing
(RDT) [8], [10], [18], [19], Different Optimization Levels
(DOL) [6], and Equivalence Modulo Inputs (EMI) [20]. RDT
is a well-known technology in compiler testing. It uses two
or more comparable compilers that implement the same
specification. For the same test inputs, these comparable
compilers should produce the same results. Hence, a com-
piler may contain bugs when the generated results are
different from the majority of other compilers (e.g., half of
the other results). DOL is a variant of RDT, which compares
the results under different optimization levels of a single
compiler. This is, when a test program is compiled in the
same experimental condition but under different optimiza-
tion levels (i.e., -O1, -O2, or -O3), it may output different
results which indicates a bug in the compiler under test. The
third technique is called EMI. It detects compiler bugs by
comparing the results between a test program and its vari-
ants in one compiler. EMI generates a series of variants from
an existing test program which are semantically equivalent
to this test program. Thus, these variants should produce the
same results as the test program under the same test input; if

not, the compilers under test could contain bugs. An empiri-
cal study shows that different compiler testing technologies
are effective at detecting distinct compiler bugs [6]. DOL
is more effective at detecting optimization-related bugs,
and RDT can substitute EMI in detecting optimization-
irrelevant bugs. Our work also leverages RDT and DOL to
test compilers. The difference is that, we have implemented
RDT under two different testing scenarios, namely the cross-
compiler scenario and the cross-version scenario. Different
testing scenarios have distinct bug-finding capabilities and
are complementary to each other.

8.3 Test Program Reduction

Test program reduction reduces a bug-triggering test pro-
gram to a smaller one that still exposes the same com-
piler bug. Zeller et al. [52] developed delta debugging
for test program reduction, and instantiated it in dd and
ddmin algorithms. Based on the delta debugging algorithm,
Berkeley Delta [34] is proposed to reduce test program at
line granularity. By allowing the only whole-line deletions,
Berkeley Delta reduces the size of the test programs until
most lines in the program are semantically independent
from each other. Furthermore, to produce sufficiently small
and valid test program, C-Reduce [33] is implemented via
a variety of transformations to avoid undefined behaviors.
The program transformations in C-Reduce are repeatedly
applied until the transformations lead to an error (due to
transformation tool crashing) or the space of reductions for
the transformations is exhausted. Subsequently, C-Reduce
is extended to CL-Reduce [53] for reducing OpenCL kernels
that trigger compiler bugs. The reduced test programs are
usually small enough to be directly reported to compiler
developers for bug reproduction. Our work also employs
the C-Reduce tool to reduce C test programs that trigger
new compiler warning defects.

Authorized licensed use limited to: Dalian University of Technology. Downloaded on March 31,2022 at 02:34:52 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3119186, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 21

9 CONCLUSION

In this paper, we aim to detect compiler warning defects.
To this end, we propose a novel diversity-guided program
mutation to generate test programs for compiler warning
testing, called DIPROM. DIPROM first removes all the
dead code regions in a given test program, which produces
a program with only live code. Then, a diversity-guided
strategy is utilized to select mutation operators to prune
or insert code snippets in the live code, resulting in a set of
program variants with diverse warning-sensitive structures.
Finally, the generated program variants are utilized to test
compiler warnings by differential testing. We evaluated the
effectiveness of DIPROM on two popular C compilers, i.e.,
GCC and Clang. The results show that DIPROM signif-
icantly outperforms three state-of-the-art approaches (i.e.,
HiCOND, Epiphron, and Hermes) by 76.74%, 34.30%, and
18.93% on average in the term of the number of detected
warning defects, respectively. In addition, DIPROM spends
less time than the comparative approaches on detecting the
same number of warning defects. Furthermore, DIPROM
has been successfully employed in the latest development
versions of GCC and Clang and exposed 8 warning defects
within two months.

ACKNOWLEDGMENT

We thank all the compiler developers for their confirmation
of our bug reports and the TSE reviewers for their valuable
feedbacks on this paper. This work is partially supported by
National Natural Science Foundation of China under grants
62032004, 61772107.

REFERENCES

[1] J. L. Anderson, “How to produce better quality test software,” IEEE
Instrumentation and Measurement Magazine, vol. 8, no. 3, pp. 34-38,
2005.

[2] C. Sun, V. Le, and Z. Su, “Finding and analyzing compiler warning
defects,” in Proceedings of the 38th International Conference on Software
Engineering, 2016, pp. 203-213.

[3] Clang Bug #18905. Available: https://bugs.llvm.org/show bug.cgi
?id=18905, accessed: 2021-02-10.

[4] C. Lindig, “Random testing of C calling conventions,” In Proceed-
ings of the 6th international symposium on Automated analysis-driven
debugging, ACM, 2005, pp. 3-12.

[5] E. Nagai, H. Awazu, N. Ishiura, and N. Takeda, “Random testing
of C compilers targeting arithmetic optimization,” In Workshop on
Synthesis And System Integration of Mixed Information Technologies,
2012, pp. 48-53.

[6] J. Chen, W. Hu, D. Hao, Y. Xiong, H. Zhang, L. Zhang, and B. Xie,
“An empirical comparison of compiler testing techniques,” in Pro-
ceedings of the 38th International Conference on Software Engineering,
2016, pp. 180-190.

[7] T. Yoshikawa, K. Shimura, and T. Ozawa, “Random program gen-
erator for Java JIT compiler test system,” In Proceedings of the 3rd
International Conference on Quality Software, 2003, pp. 20-23.

[8] C. Zhao, Y. Xue, Q. Tao, L. Guo, and Z. Wang, “Automated test
program generation for an industrial optimizing compiler,” In ICSE
Workshop on Automation of Software Test, 2009, pp. 36-43.

[9] W. M. McKeeman, “Differential testing for software,” Digital Tech-
nical Journal, vol. 10, no. 1. pp. 100-107, 1998.

[10] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understand-
ing bugs in c compilers,” in Proceedings of the 32nd Conference on
Programming Language Design and Implementation, 2011, pp. 283-294.

[11] GCC developers. [n. d.]. GCC Testsuites. Available:
https://gcc.gnu.org/onlinedocs/gccint/Testsuites.html, accessed:
2021-02-10.

[12] LLVM developers. [n. d.]. LLVM Testing Infrastructure Guide.
Available: https://llvm.org/docs/TestingGuide.html, accessed:
2021-02-10.

[13] E. Aftandilian, R. Sauciuc, S. Priya, and S. Krishnan, “Building
useful program analysis tools using an extensible java compiler,”
in Proceedings of the 12th International Working Conference on Source
Code Analysis and Manipulation (SCAM), 2012, pp. 14-23.

[14] M. Howard, “A process for performing security code reviews,”
IEEE Security and Privacy, vol. 4, no. 4, pp. 74-79, 2006.

[15] M. A. Hadavi, H. M. Sangchi, V. S. Hamishagi, and H. Shirazi,
“Software security; a vulnerability activity revisit,” in Proceedings of
the 3rd International Conference on Availability, Reliability and Security,
2008, pp. 866-872.

[16] A. Nayyar, A. Kumar, and U. Saxena, “Compiler for detection of
program vulnerabilities,” International Journal of Computer Applica-
tions, vol. 104, no. 6, pp. 25-31, 2014.

[17] A. Allain. Why Bother with Compiler Warnings. Available:
http://www.cprogramming.com/tutorial/compiler warnings.html,
accessed: 2021-02-10.

[18] W. M. McKeeman, “Differential testing for software,” Digital Tech-
nical Journal, vol. 10, no. 1, pp. 100-107, 1998.

[19] F. Sheridan, “Practical testing of a C99 compiler using output
comparison,” Software: Practice and Experience, vol. 37, no. 14, pp.
1475-1488, 2007.

[20] V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence
modulo inputs,” in Proceedings of the 35th Conference on Programming
Language Design and Implementation, 2014, pp. 216-226.

[21] J. Chen, G. Wang, D. Hao, Y. Xiong, H. Zhang, L. Zhang, and
B. Xie, “Coverage prediction for accelerating compiler testing,”
IEEE Transactions on Software Engineering, 2018, To appear.

[22] G. Grieco, M. Ceresa, and P. Buiras, “QuickFuzz: an automatic
random fuzzer for common file formats,” In International Symposium
on Haskell, 2016, pp. 13-20.

[23] G. Grieco, M. Ceresa, A. Mista, and P. Buiras, “QuickFuzz testing
for fun and profit,” Journal of Systems and Software, vol. 134, no. 12,
pp. 340-354, 2017.

[24] W. Han, B. Joe, B. Lee, C. Song, and I. Shin, “Enhancing memory
error detection for large-scale applications and fuzz testing,” In
Network and Distributed System Security Symposium (NDSS), 2018.

[25] J. Chen, G. Wang, D. Hao, Y. Xiong, H. Zhang, and L. Zhang,
“History-guided configuration diversification for compiler test-
program generation,” In Proceedings of the 34th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, 2019, pp. 305-
316.

[26] A. Fischer, C. Y. Suen, V. Frinken, K. Riesen, and H.Bunke, “Ap-
proximation of graph edit distance based on Hausdorff matching,”
Pattern Recognition, vol. 48, no. 2, pp. 331-343, 2015.

[27] Wikipedia. Jaccard index. Available: http://en.wikipedia.org/
wiki/Jaccard index, accessed: 2021-02-10.

[28] J. Chen, J. Han, P. Sun, L. Zhang, D. Hao, and L. Zhang, “Compiler
bug isolation via effective witness test program generation,” in Pro-
ceedings of the ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2019, pp. 223-234.

[29] A. Arcuri and L. Briand, “A practical guide for using statistical
tests to assess randomized algorithms in software engineering,” in
Proceedings of the 33rd International Conference on Software Engineer-
ing, 2011, pp. 1-10.

[30] J. Hauke and T. Kossowski, “Comparison of values of Pearson’s
and Spearman’s correlation coefficients on the same sets of data,”
Quaestiones Geographicae, vol. 30, no. 2, pp. 87-93, 2011.

[31] W. Zou, J. Xuan, X. Xie, Z. Chen, and B. Xu, “How does code style
inconsistency affect pull request integration? An exploratory study
on 117 GitHub projects,” Empirical Software Engineering, vol. 24, no.
6, pp. 3871-3903, 2019.

[32] H. Jiang, X. Li, Z. Ren, J. Xuan, and Z. Jin, “Toward better
summarizing bug reports with crowdsourcing elicited attributes,”
IEEE Transactions on Reliability, vol. 68, no. 1, pp. 2-22, 2018.

[33] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, X. Yang, “Test-
case reduction for C compiler bugs,” In Proceedings of the 33th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2012, pp. 335-346.

[34] S. McPeak, D. S. Wilkerson, and S. Goldsmith. Berkeley Delta.
Available: http://delta.tigris.org/, accessed: 2021-02-10.

[35] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-
inducing input,” IEEE Transactions on Software Engineering, vol. 28,
no. 2, pp. 183-200, 2002.

Authorized licensed use limited to: Dalian University of Technology. Downloaded on March 31,2022 at 02:34:52 UTC from IEEE Xplore. Restrictions apply.

0098-5589 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2021.3119186, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 22

[36] V. Le, C. Sun, and Z. Su, “Finding deep compiler bugs via guided
stochastic program mutation,” in Proceedings of the 2015 International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, 2015, pp. 386-399.

[37] Q. Zhang, C. Sun, and Z. Su, “Skeletal program enumeration for
rigorous compiler testing,” in Proceedings of the 38th Conference on
Programming Language Design and Implementation, 2017, pp. 347-361.

[38] F. Nielson, H. R. Nielson, and C. Hankin, “Principles of program
analysis,” Springer Verlag Berlin, 1999.

[39] Y. Chen, A. Groce, C. Zhang, W.-K. Wong, X. Fern, E. Eide, and
J. Regehr, “Taming compiler fuzzers,” in Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2013, pp. 197-208.

[40] V. Le, C. Sun, and Z. Su, “Randomized stress-testing of link-time
optimizers,” in Proceedings of the 2015 International Symposium on
Software Testing and Analysis, 2015, pp. 327-337.

[41] J. Chen, Y. Bai, D. Hao, Y. Xiong, H. Zhang, and B. Xie, “Learning
to prioritize test programs for compiler testing,” in Proceedings of
the 39th International Conference on Software Engineering, 2017, pp.
700-711.

[42] J. Chen, J. Patra, M. Pradel, Y. Xiong, H. Zhang, D. Hao, and
L. Zhang, “A survey of compiler testing.” ACM Computing Surveys,
2020, To appear.

[43] E. Nagai, A. Hashimoto, and N. Ishiura, “Reinforcing random
testing of arithmetic optimization of C compilers by scaling up size
and number of expressions,” IPSJ Transactions on System LSI Design
Methodology, vol. 7, no. 4, pp. 91-100, 2014.

[44] C. Sun, V. Le, Q. Zhang, and Z. Su, “Toward understanding
compiler bugs in gcc and llvm,” in Proceedings of the 25th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2016, pp. 294-305.

[45] Y. Tang, Z. Ren, W. Kong, and H. Jiang, “Compiler testing: a
systematic literature analysis,” Frontiers of Computer Science in China,
vol. 14, no. 1, pp. 1-20, 2020.

[46] Plum Hall, Inc, “The Plum Hall Validation Suite for C,” [Online].
Available: http://www.plumhall.com/stec.html, accessed: 2021-02-
10.

[47] ACE, “SuperTest compiler test and validation suite,” [Online].
Available: http://www.ace.nl/compiler/supertest.html, accessed:
2021-02-10.

[48] Perennial, “The Perennial Validation Suite for C and C++,” [On-
line]. Available: https://www.peren.com/, accessed: 2021-02-10.

[49] C. Sun, V. Le, and Z. Su, “Finding compiler bugs via live code
mutation,” in Proceedings of the Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications, 2016, pp. 849-863.

[50] Y. Chen, T. Su, C. Sun, Z. Su, and J. Zhao, “ Coverage-directed
differential testing of JVM implementations,” in Proceedings of the
37th annual ACM SIGPLAN conference on Programming Language
Design and Implementation, 2016, pp. 85-99.

[51] Y. Chen, T. Su, and Z. Su, “Deep differential testing of JVM
implementations, ” in Proceedings of the 41st International Conference
on Software Engineering, 2019, pp. 1257-1268.

[52] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-
inducing input,” IEEE Transactions on Software Engineering, vol. 28,
no. 2, pp. 183-200, 2002.

[53] M. Pflanzer, A. F. Donaldson, and A. Lascu, “Automatic test case
reduction for opencl,” In Proceedings of the 4th International Workshop
on OpenCL, 2016, pp. 1-12.

Authorized licensed use limited to: Dalian University of Technology. Downloaded on March 31,2022 at 02:34:52 UTC from IEEE Xplore. Restrictions apply.

