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Abstract—With the plain text descriptions of design patterns, developers could better learn and understand the definitions and usage
scenarios of design patterns. To facilitate the automatic usage of these descriptions, e.g., recommending design patterns by free-text
queries, design patterns and natural languages should be adequately associated. Existing studies usually use texts in design pattern
books as the representations of design patterns to calculate similarities with the queries. However, this way is problematic. Lots of
information of design patterns may be absent from design pattern books and many words would be out of vocabulary due to the
content limitation of these books. To overcome these issues, a more comprehensive method should be constructed to estimate the
relatedness between design patterns and natural language words. Motivated by Word2Vec, in this study, we propose DPWord2Vec that
embeds design patterns and natural language words into vectors simultaneously. We first build a corpus containing more than 400
thousand documents extracted from design pattern books, Wikipedia, and Stack Overflow. Next, we redefine the concept of context
window to associate design patterns with words. Then, the design pattern and word vector representations are learnt by leveraging an
advanced word embedding method. The learnt design pattern and word vectors can be universally used in textual description based
design pattern tasks. An evaluation shows that DPWord2Vec outperforms the baseline algorithms by 24.2%-120.9% in measuring the
similarities between design patterns and words in terms of Spearman’s rank correlation coefficient. Moreover, we adopt DPWord2Vec on
two typical design pattern tasks. In the design pattern tag recommendation task, the DPWord2Vec-based method outperforms two state-
of-the-art algorithms by 6.6% and 32.7% respectively when considering Recall@10. In the design pattern selection task, DPWord2Vec
improves the existing methods by 6.5%-70.7% in terms of MRR.

Index Terms—Design Pattern, Word Embedding, Word2Vec, Semantic Similarity, Tag Recommendation, Design Pattern Selection.
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1 INTRODUCTION

SOFTWARE design patterns derive from the notion of
design pattern in the area of architecture [1], aiming

to document reusable experience for recurring software
design problems [2]. In recent years, many studies about
design patterns have been conducted [3], [4], [5]. As to the
literature, there are roughly two ways to describe design
patterns: the formal way and the informal way.

The formal way specifies design patterns with formally
defined pattern languages. For example, the GoF (Gang-
of-Four) book respectively uses UML (Unified Modeling
Language) class diagram and sequence diagram to illustrate
the structure and collaborations of each design pattern [2].
A number of studies are based on the formal descriptions
of design patterns [4], [6], as formal specifications enhance
the capabilities of machine processing [7]. However, there
are some weaknesses of the formal way. Firstly, it is incon-
venient to precisely specify the intent and applicability of
design patterns. Secondly, building the meta-model of each
design pattern is usually costly [8]. Thirdly, the formal way
may lose human readability, which is critically important to
the utility of design patterns [7].
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Conversely, the informal way depicts design patterns
with free text. Comparing with the formal way, it is more
understandable and convenient to describe design pattern
relevant artifacts in words. Thus, the informal way is a
profitable supplement to the formal way. To provide tool
supports for design pattern relevant tasks based on informal
descriptions, the key point is to establish the semantic rela-
tionships between design patterns and natural languages, so
that the retrieval or identification of design patterns can be
practically realized. However, to associate design patterns
with natural languages is no easy job. A design pattern
name is usually a phrase, such as “factory method”. An
experienced developer may capture the semantics of the
design pattern via the name as he/she understands the rel-
evant background. But for the automatic tools, it is difficult
to comprehend the connotations from only these several
words. More information about design patterns should be
provided for them to “learn” the background knowledge.

To obtain exact semantic information of design patterns,
the existing studies usually take the descriptions in design
pattern books as standard definitions of design patterns [8],
[9], [10]. If a snippet of text is similar to the standard
definition of a design pattern, then it is likely to be related
to the design pattern. Hence, the relatedness between design
patterns and natural languages can be estimated. However,
this kind of methods is still problematic. On one hand,
much information about design patterns is absent from
these books. Design pattern books usually depict the mech-
anisms, scenarios, and specifications of design patterns [2].
As time goes by, many applications beyond the original
design pattern books have been developed. For example,
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the Active Record design pattern is related to the Ruby on
Rails framework as Active Record provides the data model
of the framework1. The AngularJS framework implements
the Dependency Injection design pattern itself and usually
accompanies by this design pattern2. These relationships
cannot be mined from design pattern books. On the other
hand, the vocabulary extracted from design pattern books
is usually too small. The lengths of descriptions in design
pattern books are limited and many natural language words
may be out of the scope. It is difficult to handle the texts
containing many out-of-vocabulary words. Therefore, the
wide usage of this kind of methods is restricted.

In this study, we aim to overcome these issues by con-
structing a general method to estimate the relatedness be-
tween design patterns and natural language words, in order
that it can be universally used in the tasks based on informal
descriptions of design patterns. The “words” here refer to
as both plain natural language words, such as “factory” and
“method”, and software specific terms, such as “angularjs”.
Inspired by the word embedding method [11], we propose
DPWord2Vec that maps both design patterns and natural
language words into one vector space. With the design
pattern and word vectors, the similarity between a design
pattern and a word or a document can be calculated. In this
way, the relationship between natural languages and design
patterns can be built. However, there are two challenges to
be addressed. First, how to find a relatively large corpus
about design patterns? Second, how to associate a design
pattern with its relevant natural language words for vectors
training?

To handle the first challenge, we build a general corpus
containing 491,555 documents. The general corpus consists
of two parts: the description corpus and the crowdsourced
corpus. The description corpus contains relatively formal
design pattern descriptions that are extracted from design
pattern books and Wikipedia. The crowdsourced corpus is
constructed based on a set of design pattern relevant Stack
Overflow posts obtained from our previous work [12]. Then
we extend the concept of context window in Word2Vec to
our general corpus and define the context windows for
each design pattern and each word respectively. In this
way, the linkages between design patterns and words are
established, that is, the design pattern context windows
contain words and design patterns appear in word context
windows. Hence, the second challenge can be properly
addressed. Finally, the design pattern and word vector
representations are learnt by leveraging an advanced word
embedding method, namely GloVe [13], based on these
context windows.

To clarify the quality of the learnt design pattern and
word vectors, we deploy an evaluation with a dp-word
(design pattern - word) similarity task. Experimental results
on 2,000 manually labelled dp-word pairs show that the
learnt vectors by DPWord2Vec are more effective than some
widely used semantic relatedness estimation algorithms,
i.e., outperform these algorithms by 24.2%-120.9% in terms
of Spearman’s rank correlation coefficient. To show the
practicability, we depict two applications of DPWord2Vec to

1. https://guides.rubyonrails.org/active record basics.html
2. https://angular.io/guide/dependency-injection

solve two typical design pattern tasks, i.e., design pattern
tag recommendation and design pattern selection. In the
first application, when recommending the top 10 design
pattern tags for the posts in a software information site,
the DPWord2Vec-based method outperforms two state-of-
the-art tag recommendation methods by 6.6% and 32.7%
respectively in terms of Recall@10. In the second appli-
cation, the method refined by DPWord2Vec outperforms
the two existing design pattern selection methods by 6.5%
and 70.7% respectively when considering the mean values
of MRR (Mean Reciprocal Rank) over three design pattern
collections.

In this paper, we make the following contributions:
1) We propose DPWord2Vec that maps both design

patterns and natural language words into vectors to
support design pattern relevant tasks. To the best of
our knowledge, this is the first work that establishes
the universal relationship between design patterns
and natural languages.

2) We evaluate DPWord2Vec on a manually labelled
dp-word pair dataset to show its effectiveness in
semantic relatedness estimation.

3) DPWord2Vec is applied to two design pattern rel-
evant tasks, namely design pattern tag recommen-
dation and design pattern selection. DPWord2Vec
outperforms the state-of-the-art methods.

The rest of this paper is organized as follows. Section 2
shows the background of the study. Section 3 presents the
framework of DPWord2Vec. The settings and results for
evaluating DPWord2Vec are depicted in Section 4 and 5,
respectively. Section 6 and 7 introduce two applications
of DPWord2Vec. Section 8 discusses potential threats to
validity. Some studies related to our work are outlined in
Section 9. We conclude the paper in Section 10.

2 PRELIMINARIES

Before the depiction of DPWord2Vec, we demonstrate the
concept of design pattern in this study and briefly introduce
the word embedding technique.

2.1 Concept of Design Pattern
Generally speaking, design patterns are proven solutions
to recurring software design problems [2]. However, to the
best of our knowledge, there are no formal definitions nor
standard lists of design patterns. There exist numbers of
design pattern collections that are published with multiple
channels, such as design pattern books, academic papers, or
online libraries [7]. Design patterns in different collections
may be depicted in different ways, e.g., in flat text format or
using UML. In this paper, we focus on the design patterns
with rich textual descriptions and collect design patterns
from various sources.

Similar to “design pattern”, “architecture pattern” is also
a means for software design. Strictly, they are not a same
concept, but the boundary between them may not be unified
for different design pattern collections. For example, Model
View Controller is an example of architectural pattern in
Wikipedia3 but marked as a design pattern in MSDN4.

3. https://en.wikipedia.org/wiki/Architectural pattern
4. https://msdn.microsoft.com/en-us/library/ms978748.aspx
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Therefore, instead of creating a standard subjectively, we
choose not to distinguish them in our study. Once an entity
is identified as a design pattern in some design pattern
collections, we regard it as a design pattern.

2.2 Word Embedding

Word embedding is a set of techniques that maps words
or phrases in the vocabulary to vectors of real numbers.
The core part of DPWord2Vec is also word embedding, but
it handles both words and design patterns. Word embed-
ding methods focus on mapping words into a continuous
vector space with a much lower dimension than the size
of vocabulary and the vector representation of each word is
determined by supervised learning based on the corpus [11].

To facilitate the demonstration, we explain how word
embedding works with an example. Assuming there is a
corpus that contains a sentence: “software design patterns
encapsulate proven solutions that address recurring prob-
lems”. To mine the relationships between words, the sliding
context window strategy is usually used [11]. A context
window contains a central word and several surrounding
words which are at a distance of no more than c positions
from the central word. For example, the context window
with centre “patterns” and c = 2 contains the surrounding
words “software”, “design”, “encapsulate”, and “proven”.
Multiple local context windows are constructed as the cen-
tral word slides from the beginning (“software”) to the end
(“problems”) of the corpus.

Then the word vectors are learnt based on these local
context windows. The intuition is that if two words appear
frequently in the same context window then their vector
representations are highly associated. For example, the ob-
jective of the Skip-gram model is to learn word vector rep-
resentations that are good at predicting each surrounding
word by the vector of the central word [11]. Conversely, the
Continuous Bag-of-Words (CBOW) model aims to predict
the central word by the concatenation or average of the vec-
tors of the surrounding words [11]. Different from them, the
GloVe model counts the number of the total co-occurrences
of each pair of words through all the local context windows
and predicts the co-occurrence number by the vectors of the
words in the pair [13].

3 THE DPWORD2VEC FRAMEWORK

DPWord2Vec aims to embed natural language words and
design patterns into one vector space. This process can be
divided into four phases (as shown in Fig. 1). At first,
the corpus related to design patterns are acquired from
multiple sources. Next, the documents in the corpus are
preprocessed. Then, we propose a context window-based
strategy to strengthen the tie between words and design
patterns. At last, the word and design pattern vectors are
trained based on the corpus and the context windows.

3.1 Corpus Building

To train the vectors of words and design patterns, a corpus
relevant to design patterns should be built at first. Formally,
we construct a general corpus C, which contains multiple

Fig. 1: The framework of DPWord2Vec.

documents. For each document doc in C, doc has two com-
ponents: the token component doc.Tokens, a sequence of
natural language words that describes some design patterns,
and the design pattern component doc.DPs, a set of design
patterns described by doc.Tokens. The general corpus C
can be further categorized into two groups according to
their sources.

Description Corpus. Documents in this corpus are ex-
tracted from design pattern books and Wikipedia. Some
design pattern books catalog their own lists of design pat-
terns. For example, GoF presents 23 design patterns with
the problem definitions and design specifications [2]. A
design pattern is usually described by a chapter or a section
in a design pattern book. Similarly, a number of design
patterns are specified by Wikipedia as entries with one page
for each design pattern5. A chapter or section of a design
pattern book, or a Wikipedia page of a design pattern forms
a document doc. In this corpus, doc.Tokens denotes the
whole text in the chapter, section, or page, but excluding
the code snippets. Meanwhile, doc.DPs contains only one
element, i.e., the described design pattern.

Totally, the description corpus contains 431 documents,
which are associated with 13 design pattern books and 125
Wikipedia pages. Amongst the design pattern components,
349 unique design patterns are involved.

Crowdsourced Corpus. Documents in this corpus are
constructed by referring to the programming forum, i.e.,
Stack Overflow6. In the previous study [12], 187,493 design
pattern relevant question posts spanning from August 2008
to December 2017 are detected in Stack Overflow.

A design pattern relevant post indicates the design pat-
tern name(s) appears at least one time in the post. However,
it is not a trivial string matching task to detect the design
pattern occurrences in Stack Overflow posts, as the discus-

5. https://en.wikipedia.org/wiki/Category:Software design pat-
terns

6. https://stackoverflow.com/
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sions on Stack Overflow are usually informal [14], [15] and
the name of a design pattern may not be mentioned in a
unique form. It is also referred to as the morphological form
issue [14]. The previous study has attempted to address
this issue in two aspects. On the one hand, the standard
design pattern names as well as other common names are
collected simultaneously from the existing design pattern
collections, e.g., design pattern books, in which the other
well-known names of each containing design pattern are
usually presented explicitly, e.g., marked as “also known
as”. These names include aliases, e.g., “open implementa-
tion” is an alias for “reflection”, and acronyms, e.g., “mvc” is
an acronym for “model view controller”. On the other hand,
regular expressions are leveraged to allow some variants
when searching a design pattern name in the text of the
Stack Overflow posts. For example, the regular expres-
sion for “model view controller” is “model[ˆa-z]?view[ˆa-
z]?controller”, where “[ˆa-z]?” denotes a non-alphabetic
character that matches zero or one time, so that the variants
such as “model-view-controller”, “model view controller”,
and “modelviewcontroller” can be involved. A manual val-
idation on the sampled posts shows that the detection is
acceptably accurate, i.e., achieves Precision value of 97.3%
and Recall value of 87.8%. More details can be obtained by
referring to [12].

We use these question posts to construct the crowd-
sourced corpus. Moreover, it is enriched by all the answer
posts to these design pattern relevant question posts. A
question post and each of its answer post are assigned to
different documents. The relevant design pattern(s) to an
answer post is as same as its question post. For a document
doc in this corpus, doc.Tokens denotes a content merging
the title and body part of a question or answer post with
code snippets discarded, and doc.DPs is the set of the
relevant design pattern(s) to the post.

Finally, there are 491,124 documents in this corpus and
210 unique design patterns are involved.

By merging the two corpora, we obtain a general corpus
C, which contains 491,555 documents7. The involved design
patterns are indexed and form a design pattern vocabulary,
namely VDP , with 372 design patterns. Although the docu-
ments in the description corpus are far less than those in the
crowdsourced corpus, the description corpus is indispens-
able for building the design pattern vectors. On one hand,
the description corpus makes it possible to build vectors
for the design patterns that are rarely discussed in Stack
Overflow. On the other hand, this corpus tends to provide
more formal and precise depictions of design patterns than
the crowdsourced corpus. We will show its significance in
Section 5.1.

3.2 Corpus Preprocessing
Comparing to the general natural language documents, the
amount of design pattern relevant documents tends to be
quite small. Therefore, our built corpus is relatively smaller
than those for training the common word vectors [11], [13].
Based on this actuality, we perform preprocessing on the

7. The detailed description corpus and crowdsourced corpus, as
well as the number of relevant documents to each design pattern are
available via https://github.com/WoodenHeadoo/dpword2vec.

token component of each document aiming to filter out
the insignificant and redundant information and build a
compact vocabulary.

At first, code-like tokens (e.g., function names) in a natu-
ral language sentence are split according to its camel style to
ensure the semantic integrity of the sentence. With this step,
on the one hand, these code-like tokens can be converted
into more understandable identifiers [16] to better reflect the
semantic meanings. On the other hand, the volume of the
vocabulary can be reduced. Next, we tokenize and lower-
case the token component of each document. Then, the less
informative tokens, including English-language stop word-
s, special tags (HTML tags in Stack Overflow posts, and
reference markers in design pattern books and Wikipedia
pages), and non-alphabetic characters (e.g., numbers) are
removed from the text, as they are not very useful to reflect
the semantic relationship between the natural language and
design patterns. Moreover, each token is stemmed to its root
form, e.g., “developer”, “developed”, and “developing” to
“develop”. As the words with a same root usually have
similar meaning [17] and the vector representations of them
are also similar in some word embedding methods [18],
[19], we can simply regard them as a same word without
losing much semantic information. At last, we discard the
words that occur no more than five times in the corpus when
constructing the vocabulary but retain them in the corpus.
These words are likely to be noisy terms [20] and it is not
significant to train the vectors of them.

Some of the above steps, such as camel case splitting,
stop words removing, and word stemming, may be not com-
mon in word embedding methods. With abundant training
corpora, vector representation of each distinct identifier in
the text can be learnt. However, due to the scale of the
design pattern corpus, it is reasonable to conduct these
preprocessing steps to reduce the vocabulary size, i.e., the
number of vectors to be learnt, to adapt to the corpus.
Furthermore, the focus of this study is to build the semantic
relationship between natural languages and design patterns,
it is not a core concern to represent all the identifiers
precisely. As a common concept in the word embedding
methods, the word context will not be significantly affected
by the preprocessing, since the eliminated tokens contain
little semantic information and the meanings of the changed
tokens are mainly retained. It is adequate to apply the word
embedding methods to the preprocessed corpus.

After the preprocessing, we obtain a word vocabulary
VWord that contains 27,770 words.

3.3 Context Window Construction

As to the corpus we build, each document contains two
parts: the natural language words and the design patterns.
To train the vectors of words and design patterns together,
we should combine the two parts. In standard word embed-
ding models, words are usually associated by leveraging the
sliding context window-based strategy [11]. For example,
in the Skip-gram model, the vector representation of the
central word is learned for predicting the other words in
a context window. Similarly, the CBOW model uses the
composition of the vectors of the surrounding words in
a context window to predict the central word. Hence, a
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Dependency Injection is a practice where objects are de-
signed in a manner where they receive instances of the
objects from other pieces of code, instead of constructing
them internally. This means that any object implementing
the interface which is required by the object can be sub-
stituted in without changing the code, which simplifies
testing, and improves decoupling.

Fig. 2: A paragraph that describes the Dependency Injection
design pattern. The design pattern name is in red bold font
and the words in the context window (of size five) of the
name are in blue italic font.

reasonable method for associating natural language words
and design patterns is to locate them in a context window.

To this end, an intuitive way is to regard design pat-
tern names appearing in natural language text as special
“words”. Concretely, given a document doc in the corpus
C, for the design patterns in doc.DPs, we detect all the
occurrences of design pattern names (including aliases) in
doc.Tokens and replace them with predefined tokens. These
predefined tokens are the “words” of design patterns and
mixed with the natural language words. Then design pat-
terns can be handled together with natural language words
by the sliding context window-based strategies. However,
there is a main issue for this way: design pattern names
tend to appear infrequently in the text. For instance, Fig. 2
presents a paragraph in a post (#131766) of Stack Overflow.
This paragraph indeed describes the Dependency Injection
design pattern, but the design pattern name only appears
one time at the beginning of the paragraph. When applying
the sliding context window-based strategies to this para-
graph, the design pattern Dependency Injection can be only
associated with some words in the front but the rest are
ignored.

To resolve this issue, we redefine the concept of context
window by considering both natural language words and
design patterns. In the new definition, the context window
size is not fixed, but there is also a parameter of context
window size for words as the standard models. For clarity,
we name it as c.

There are two types of context windows:
Context Window for Word. For a word in a document,

the context window for this word contains other words
around the word with radius c and all the design patterns
the document describes. Formally, for a document doc in
C, let doc.Tokens(i) denote the ith word of the text and
doc.Tokens.len denote the length of the text. The Context
Window of doc.Tokens(i) is defined as

ContextWord
doc (i, doc.Tokens(i))

={doc.Tokens(j)|max{1, i− c} ≤ j ≤
min{doc.Tokens.len, i+ c}, j ̸= i} ∪ doc.DPs.

(1)

Take the document in Table 1 as an example. Assuming
c = 2, the Context Window for the sixth word “inter-
face” contains the two words ahead of it (i.e., “facade”
and “provide”), the two words behind it (i.e., “create” and
“subsystem”), as well as the two design patterns mentioned
in the document (i.e., “[abstract-factory]” and “[facade]”).

Context Window for Design Pattern. Given a design
pattern described by a document, the context window for
the design pattern consists of all the words in the text
and the other described design patterns. Formally, for a
document doc and a design pattern dp ∈ doc.DPs, the
Context Window of dp is

ContextDP
doc (dp)

={doc.Tokens(j)|1 ≤ j ≤ doc.Tokens.len}
∪ (doc.DPs− {dp}).

(2)

For example, in Table 1, the Context Window for the design
pattern “[abstract-factory]” contains all the words (i.e., “ab-
stract”, “factory”, ..., “class”) and the other design pattern
“[facade]”.

According to the definitions of the two context windows,
a design pattern can be associated with each word in the
document that describes the design pattern. The tie between
words and design patterns is strengthened. To show the
effectiveness of the new definitions, we use the performance
of the method that leverages design pattern name occur-
rences (mentioned above) for comparison in Section 5.3.

With the definitions, for any document doc in C, the
context window of each word in doc.Tokens and the context
window of each design pattern in doc.DPs are constructed.

3.4 Vectors Training
Once the context windows are clarified, the word and
design pattern vectors can be generated by any sliding
context window-based models. In DPWord2Vec, we choose
GloVe [13] for vector generation, due to the following rea-
sons:

1) GloVe is a state-of-the-art model that outperforms
Skip-gram and CBOW on several natural language
processing tasks with higher efficiency [13].

2) GloVe benefits from both global co-occurrences and
local context windows. Global co-occurrences suit to
present the dp-word relationships and design pat-
tern - design pattern relationships. Meanwhile, the
word - word relationships could be well handled by
local context windows. Therefore, the GloVe model
is suitable for this scenario.

To train the vectors with GloVe, the input of GloVe
should be specified. Generally, the input of GloVe is the
entries co-occurrence counts matrix X , whose element Xij

represents the number of times entry j occurs in the context
window of entry i. In DPWord2Vec, entry j and entry i can
be any word in the word vocabulary VWord or any design
pattern in the design pattern vocabulary VDP . Therefore, in
DPWord2Vec, Xij is calculated respectively when entry i is
a word and when entry i is a design pattern according to
the two definitions of context window. Note that Xij = Xji

for any j and i according to our context window definitions,
hence only half of the entries co-occurrence counts should
be calculated.

Moreover, the dp-word co-occurrences are weighted.
According to [21], the frequencies of words follow Zipf’s
law in natural language corpora. Similarly, the number of
relevant posts in Stack Overflow to each design pattern ex-
hibits a long tail behavior [12]. That means, the distribution
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TABLE 1: An example for two types of Context Windows (c = 2)

doc.Tokensa doc.DPs

1Abstract 2factory can be 3used(use) 4facade to 5provide an 6interface for 7creating(create) 8subsystem

9objects(object) in a 10subsystem 11independent 12way. 13Abstract 14factory can 15also be 16used(use)

as an 17alternative to 18facade to 19hide 20platform 21specific 22classes(class).

[abstract-factory], [facade]

ContextWord
doc (6, “interface”) = {“facade”, “provide”, “create”, “subsystem”, “[abstract-factory]”, “[facade]”}

ContextDP
doc (“[abstract-factory]”) = {“abstract”, “factory”, ..., “class”, ‘[facade]”}

a
As declared above, the stop words are eliminated from the text of the document (in strikeout fonts) and the rest of the words are stemmed
to their root forms.

of words or design patterns is highly skewed. Moreover,
according to the definitions, the context window of a design
pattern contains all the words in the document and the
design pattern is also contained in the context window of
each of the words. As a result, some design patterns may
appear commonly in the context windows of many words,
i.e., potentially relate to many words, and vice versa. When
dealing with the tasks which request to associate design
patterns with words, e.g., to retrieve design patterns by
keywords, we should ensure these very common design pat-
terns not to be over weighted. Likewise, the words that are
contained in the context windows of many design patterns
should also be well handled. Hence, a weighting strategy
is applied to diminish the effects of these common terms.
Formally, if entry j is a word and entry i is a design pattern,
Xij is tuned by the weights of j and i. The weights are
calculated just like the inverse document frequency value:

wj = log(
#VDP

OccurDP (j)
), wi = log(

#VWord

OccurWord(i)
), (3)

where OccurDP (j) denotes the number of unique design
patterns in VDP that ever occur in the context window of
word j and OccurWord(i) denotes the number of unique
words in VWord that ever occur in the context window of
design pattern i. The weights are normalized by the average
values:

w̃j =
wj

avg{wj′ |j′ ∈ VWord}
, w̃i =

wi

avg{wi′ |i′ ∈ VDP }
. (4)

Finally, Xij is recalculated as

X̃ij = ceil(Xij · w̃i · w̃j), (5)

where ceil(.) is a function that converts a floating number
to the nearest integer.

Given the vector dimension, the vectors of words in
VWord and design patterns in VDP are generated by GloVe8

based on the entries co-occurrence counts matrix X . For
training GloVe, we use the settings in [13], i.e., the number
of iterations is 100, the initial learning rate is 0.05, and the
model parameters xmax = 100 and α = 0.75. Finally, the
word and design pattern vectors are calculated as the sum
of the “input” and “output” vectors generated by GloVe9.

8. https://nlp.stanford.edu/projects/glove/
9. The source code and the learnt word and design pattern vectors

can be accessed on https://github.com/WoodenHeadoo/dpword2vec.

4 EVALUATION SETTINGS

In this section, we present the experimental settings for
evaluating the DPWord2Vec model, including evaluation
protocols, baseline algorithms, evaluation metrics, and pa-
rameter settings of DPWord2Vec.

4.1 Evaluation Protocols
In this subsection, we demonstrate the strategy and dataset
for evaluating DPWord2Vec.

Word similarity tasks are usually leveraged to evaluate
the quality of word vectors in word embedding models [13],
[18], [22], [23]. Generally speaking, two semantically rele-
vant words should indicate that their vector representations
are similar [22]. In DPWord2Vec, “word” means natural
language word or design pattern. As we focus on the
relationship between natural languages and design patterns,
only the dp-word similarity is considered. This similarity
can be estimated by calculating the cosine similarity of the
word vector and the design pattern vector. To the best of
our knowledge, there exist no publicly available datasets for
dp-word similarity evaluation. Therefore, we build a new
dataset of dp-word pairs with relatedness labels to address
this issue10.

Design Pattern Selection. At first, a list of design pat-
terns is selected. To obtain a diverse list of design patterns,
we select design patterns based on their frequencies, like
the methods for word similarity datasets construction [18],
[23]. The frequency of a design pattern means the number
of documents in C that describe the design pattern. The
372 design patterns in VDP can be grouped into five classes
according to five frequency intervals: (0,10], (10,50], (50,400],
(400,1500], and (1500,+∞). Except the first class which con-
tains a relatively large number of infrequent design patterns,
the other four classes have similar sizes, i.e., there are 34, 33,
33, and 34 design patterns in these classes respectively. We
randomly sample ten design patterns from each class and
get a list of 50 design patterns.

Pair Construction. Next, for each design pattern, we
select a list of words to form pairs. Given a design pattern,
if a word is randomly selected from VWord, it is unlikely
to be related to the design pattern. In other studies, word
pairs are constructed by using WordNet synonym sets [18],
[23]. However, there are no similar databases specified for
design patterns as to our knowledge. Hence, we employ the
frequency of co-occurrence to select words. The intuition is

10. We provide the dataset on http-
s://github.com/WoodenHeadoo/dpword2vec.
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if a design pattern and a word appear in the same document
frequently, they are more likely to be relevant, then the word
is more likely to be chosen. Concretely, given a design pat-
tern, 40 non-duplicated words are randomly chosen based
on a distribution, in which the probability of choosing a
word is proportional to the number of documents contain-
ing both the word and the design pattern. Then we obtain
50×40 = 2,000 dp-word pairs and the number is comparable
to those in [18] and [23].

Human Judgment. According to the last step of word
similarity datasets construction [18], [23], [24], the related-
ness between the design pattern and the word in each pair
is manually labelled. To reduce the influence of personal
biases, we recruit three graduate students to label the pairs.
These participants all have bachelor’s degrees majoring in
computer science or software engineering and have been
trained in object-oriented programming including design
pattern relevant skills. They are also experienced with an-
notating software artifacts, such as evaluating the quality of
the enriched API specifications and scoring the results of the
code search algorithms.

Before labelling these pairs, all the participants go over
the materials of the involving design patterns as a retrospec-
t. When labelling, each dp-word pair is sent to each partic-
ipant and he/she attempts to construct a context that the
word is mentioned and associated with the design pattern.
In this procedure, the participants are allowed to search for
the texts that contain the design pattern and the word on
the Internet to help them. If one still doubts whether such
a context exists, the documents in C, in which the design
pattern and the word co-occur, can serve as references. For
each participant, a pair is labelled as “related” if the design
pattern and the word can be associated in some certain
contexts, and labelled as “unrelated” if they are hard to be
linked or the meaning of the word is so general that the link
seems to be too weak. The final label of a pair is “related” or
“unrelated” if the participants can reach an agreement, i.e.,
they all label it as “related” or “unrelated”. Otherwise, its
final label is “somewhat related”. That means, there exists
some uncertainty but the relatedness is between “related”
and “unrelated”.

From the labelling process, we get some observations.
Some pairs are consistently labelled as “related” since the
word can describe the use scenario of the design pattern
directly and the relationship between them can be easily
imagined. For example, Publish/Subscribe is a messaging
design pattern that provides instant notifications for dis-
tributed applications. The related words include “event”
(the notifications are events), “channel” (notifications are
broadcasted via the channel), and “endpoint” (the notifi-
cation publishers and subscribers are all endpoints). Some
pairs are related when considering the background of the
entity that the word represents. For example, the word
“wpf” refers to a programming framework. It is supposed
to be related to the MVVM (Model View ViewModel) design
pattern as it is a typical application of MVVM. For the
pairs with the consistent label “unrelated”, the association
between the word and the design pattern is usually too
weak to make sense. They may just be mentioned in a same
document occasionally, for instance, Sharding - “excel”,
Iterator - “message”, and Decorator - “plugin”. The words

whose meanings tend to be very general, such as “idea”,
“make”, and “sometime”, are also labelled as “unrelated”
to any design patterns as it is difficult to specify a scenario
that they can be related. Except for the consistently labelled
ones, some pairs are controversial. For example, “dismiss”
can represent a specific operation in the ViewController
design pattern. However, it is also somewhat a general
meaning word. Two participants judge it to be related to
ViewController but the other one labels “unrelated”. Hence,
the final label is “somewhat related”. To measure the degree
of agreement among the participants, we calculate the Fleiss’
Kappa. The value is 0.6421, which means a substantial
agreement. Therefore, the labelling results are relatively
reliable.

After the labelling process, 369 pairs (18.45%) are la-
belled as “related”, 457 pairs (22.85%) are labelled as “some-
what related”, and 1174 pairs (58.7%) are with the label
“unrelated”.

4.2 Baseline Algorithms

There exist several similarity methods to estimate semantic
relatedness between natural language words. We take three
categories of intensively used methods as baselines. This
categorization can cover that adopted in [25].

4.2.1 Latent Semantics based Methods
In this category of methods, the words and design patterns
are represented by latent variable vectors. Then the related-
ness between a word and a design pattern can be measured
by the cosine similarity11. This category includes Latent
Semantic Indexing (LSI) and Latent Dirichlet Allocation
(LDA).

LSI (also known as Latent Semantic Analysis, LSA) is an
unsupervised algorithm of analyzing the relationships be-
tween documents and terms by producing a set of latent se-
mantic concepts [26]. It has been used in estimating semantic
relatedness in source code [25]. In the evaluation, the input
of LSI is the term× document matrix, in which an element
represents the frequency of a term (word or design pattern)
appearing in a document. Then the words and the design
patterns are represented in a low-dimensional (latent) space
by applying singular value decomposition. The dimension
of the latent space is initially set as 10 and then gradually
increased. During this process, the performance of LSI is
evaluated. The value which achieves the best performance
is retained and recorded. Finally, the dimension is set as
40012.

LDA is a topic modeling technique that has been used
for analysing software-specific data in several studies [20],
[27], [28], [29]. To use LDA in the evaluation, each document
in the corpus C is represented as a bag of words and
design patterns without order. With the Gibbs sampling
based implementation of LDA [30], each word or design
pattern in a document is assigned to a topic. By considering
the whole corpus, the words and the design patterns can

11. https://en.wikipedia.org/wiki/Cosine similarity
12. In fact, the performance of LSI in terms of NDCG@40 and Spear-

man’s ρ does not change much when the dimension is larger than 250.
The details are shown on https://github.com/WoodenHeadoo/dpwo-
rd2vec/blob/master/baselines/LSI.md.
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be represented as probability distributions over topics. The
topic number is set to 40 as it has been shown to be
appropriate for the Stack Overflow dataset [28].

4.2.2 Co-occurrence based Methods

Co-occurrence based methods calculate the similarity (or
distance) between a word and a design pattern directly
based on their co-occurrences, including Pointwise Mutual
Information (PMI) and Normalized Google Distance (NGD).

PMI is an intuitive and computationally efficient related-
ness method for massive corpora of textual data [31]. NGD
is a semantic distance measure between words or phrases
based on information distance and Kolmogorov complex-
ity [32]. It has been verified to be effective in quantifying
semantic relatedness between individual code terms (named
Normalized Software Distance, NSD) [25]. Since NGD is a
distance measure, the similarity can be obtained by negating
the value of NGD. Both PMI and NGD take the frequency of
a word (i.e., the number of documents containing the word),
the frequency of a design pattern (i.e., the number of docu-
ments containing the design pattern), and the frequency of
the co-occurrence (i.e., the number of documents containing
both the word and the design pattern) in the corpus C as
input, but calculate the measures in different ways.

4.2.3 Vector Space Model based Method

Another baseline is the Vector Space Model (VSM). Specif-
ically, we use the TF-IDF (Term Frequency - Inverse Docu-
ment Frequency) [33] schema to model the text. By multiply-
ing each row of the term× document matrix (which is also
the input of LSI) by the IDF value of the corresponding term,
we obtain a matrix of TF-IDF values. Each row of the TF-IDF
matrix can be regarded as the vector of the corresponding
term (word or design pattern), which indicates the TF-IDF
value of the term in each document. With these term vectors,
the dp-word similarity can be also obtained by calculating
the cosine similarity. Actually, the calculation of the IDF
values is redundant in this case. Since the IDF weighting
is operated on each entire term vector, the multiplied IDF
values are eliminated automatically when calculating the
cosine similarities. Therefore, this model is equivalent to
represent a term with a row of the term×document matrix.

4.2.4 Software-Specific Method

In the evaluation, we consider a domain-specific method,
WordSimSE, which aims to build WordNet like resources for
software [24]. WordSimSE is a composite method that mea-
sures the similarity between terms by combining weighting
strategy and co-occurrences. We use the WordSimSE method
to calculate the dp-word similarities based on the corpus C .
Moreover, there are three parameters to be clarified. Accord-
ing to the definition in [24], a word or a design pattern can
be classified into one of the three groups: popular software
tag, if it is a top 10% most frequent Stack Overflow tag; non-
popular software tag, if it is a Stack Overflow tag but not in
the top 10%; and ordinary term, otherwise. The three groups
are weighted with three different parameters, namely 2.8,
2.0, and 1.4, which are also used in [24].

4.3 Evaluation Metrics

In our built dataset, each design pattern is paired with 40
words, which are labelled as “related”, “somewhat related”,
or “unrelated” to the design pattern. We want to investi-
gate whether the similarity scores given by the similarity
methods could correspond with the labelled ones. To this
end, we use two metrics for evaluation, namely NDCG and
Spearman’s rank correlation coefficient.

NDCG (Normalized Discounted Cumulative Gain) is a
measure of ranking quality in information retrieval and
employed in several software engineering tasks [34], [35],
[36]. For each design pattern, a similarity method ranks the
40 words in descending order according to their similarity
scores. The measure NDCG@k is calculated as

NDCG@k =
DCG@k

IDCG@k
,DCG@k =

k∑
i=1

ri
log2(i+ 1)

, (6)

where ri denotes the degree of relevancy of the ith ranked
word and its permissible values are 3 (“related”), 2 (“some-
what related”), and 1 (“unrelated”). IDCG@k is the ideal
value of DCG@k that normalizes the measure into [0,1].

Spearman’s rank correlation coefficient (Spearman’s ρ)
is a non-parametric measure of rank correlation which is
usually used in the evaluations of word similarity tasks [13],
[18], [23]. It represents the correlation between the ranks of
the 40 words based on the similarity scores of a similarity
method and the ranks based on the labelled relevance
scores. However, there are only three unique labelled rel-
evance scores in our dataset. Following [37], words with
a same score are assigned with a same average fractional
rank. Specifically, after ranking the 40 words according to
the three labels, we assume that the first m1 words are
“related”, the middle m2 words are “somewhat related”,
and the last m3 words are “unrelated”. The rank of the
“related” words is 1

m1
· (1+m1)m1

2 = m1+1
2 , the rank of the

“somewhat related” words is m1+
m2+1

2 , and the rank of the
“unrelated” words is m1 +m2 +

m3+1
2 . Then the coefficient

is calculated as

ρ = 1−
6
∑N

i=1 d
2
i

N(N2 − 1)
, (7)

where N = 40, denotes the length of the rank list, and di is
the difference between the two ranks of the ith word.

5 EVALUATION RESULTS

In this section, we investigate the following four re-
search questions (RQs) to evaluate different aspects of D-
PWord2Vec.

5.1 RQ1: How do the settings of the parameters affect
the performance of DPWord2Vec?

5.1.1 Motivation

The performance of DPWord2Vec may vary when using dif-
ferent settings. In this RQ, we investigate how DPWord2Vec
performs under different values of the parameters, i.e., the
dimension of the vectors, the size of context window for
words, and the ratio of the weights of the two corpora.
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5.1.2 Approach

Each of the three parameters is investigated independently.
Specifically, we adjust the value of one parameter and anal-
yse how the performance of DPWord2Vec changes. Mean-
while, the other two parameters keep fixed.

We change the value of the vector dimension (d) from
50 to 1,000, including 50, 100, 200, 300, 400, 500, 800, and
1,000. The value of the context window size for words (c)
varies from 5 to 100, including 5, 10, 20, 30, 40, 50, 80, and
100. Moreover, we explore the importance of the description
corpus and the crowdsourced corpus under different ratios
of weights (r). The ratio m : n indicates that each document
in the description corpus and each document in the crowd-
sourced corpus are added into the final corpus for m and n
times, respectively.

5.1.3 Results

The results for the three parameters are presented respec-
tively at follows.

Dimension of Vectors. The fold lines in Fig. 3a plot how
the mean values of NDCG@k change with different vector
dimensions. For simplicity, we only show the results for k
= 5, 10,..., 40. The bars in Fig. 3a show the mean values of
Spearman’s ρ on different vector dimensions. The settings
of the other two parameters are c = 10 and r = 1:1. In Fig. 3a,
we notice that all the fold lines have similar trends. The
values of NDCG rise slightly when the vector dimension
varies from 50 to 200 and then keep stable as the vector
dimension increases further. Meanwhile, by referring to the
bars, a similar trend can also be found on Spearman’s ρ.
In general, the performance of DPWord2Vec is not very
sensitive to the vector dimension in terms of NDCG and
Spearman’s ρ.

The dimension of the vector controls over the granularity
of the representation of a word or a design pattern. A larger
vector dimension tends to produce more fine-grained and
detailed vector representations. However, the performance
cannot further improve when the vector dimension is larger
than 200. It may imply that the representations of words
and design patterns reach the saturations at this vector
dimension based on the current model and corpus.

Size of Context Window for Words. The values of ND-
CG and Spearman’s ρ under different settings are presented
in Fig. 3b as line chart and bar chart, respectively. The other
two parameters are fixed at d = 100 and r = 1:1. As shown
in the figures, both NDCG and Spearman’s ρ all have an
approximately descending trend as the context window size
increases, especially from c = 10 to c = 20. The performance
at c = 5 is comparable to that at c = 10. For example,
NDCG@40 is 0.9556 at c = 5 and 0.9548 at c = 10, the former
is slightly better; Spearman’s ρ is 0.6141 at c = 5 and 0.6273 at
c = 10, the later is slightly better. Generally, the descending
trends are not very significant.

The context window size in DPWord2Vec only affects
the context windows for words, it determines the number of
surrounding words that a word is associated with. Too large
context window size results in too many surrounding words
that would diminish the syntactic information. It may lead
to low-quality vector representations of words and design
patterns, and then impairs the performance.
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Fig. 3: Mean NDCG and Spearman’s ρ of DPWord2Vec
under different parameter settings on the 50 design patterns.

Ratio of Corpora Weights. The results are shown in
Fig. 3c. The other two parameters are set as d = 100 and
c = 10. From the figures, we notice that the values of both
NDCG and Spearman’s ρ reach their peaks at r = 1:1, i.e.,
when the two corpora are directly mixed. The performance
at r = 5:1 is the most similar one to that at r = 1:1. When
changing the ratio, the performance drops and reaches the
worst in the two directions at r = 1:0 and r = 0:1. That means,
we will get bad results when using only one of the two
corpora13.

From the results, we can conclude that both the de-
scription corpus and the crowdsourced corpus are all indis-
pensable for good performance. Although the description
corpus is much smaller than the crowdsourced corpus, its
effects cannot be neglected. The description corpus may
stand for “quality” which supplies precise descriptions of
design patterns, and the crowdsourced corpus stands for

13. Some words or design patterns may be out of the vocabulary
when using only one corpus. In this case, the vectors are represented
as random initial values. It may be a reason for the bad results.
Nevertheless, it also implies that neither of the corpora is negligible.
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“quantity” which provides rich textual data relevant to
design patterns.

5.1.4 Conclusion
Generally, the performance of DPWord2Vec is not very
sensitive to the dimension of vectors, but the settings of
the context window size and the corpora weights affect
the performance. To get a good performance, the context
window size for words should not be too large, and the
description corpus and the crowdsourced corpus should be
balanced. The following experiments are all based on the
settings that d = 100, c = 10, and r = 1:1.

5.2 RQ2: Does DPWord2Vec outperform the baseline
algorithms in the dp-word similarity task?
5.2.1 Motivation
In this RQ, we explore whether DPWord2Vec can be su-
perior to the baseline algorithms in dp-word similarity
estimation.

5.2.2 Approach
We compare DPWord2Vec against the six baseline algo-
rithms, namely LSI, LDA, PMI, NGD, VSM, and Word-
SimSE, on our dp-word pair dataset. The two metrics, i.e.,
NDCG and Spearman’s ρ, are applied for evaluation.

5.2.3 Results
Fig. 4a shows the mean values of NDCG@k of the five
algorithms and DPWord2Vec over the 50 design patterns on
various k. Fig. 4b presents the averaged value of Spearman’s
ρ of these algorithms. As shown in Fig. 4a, DPWord2Vec
almost outperforms all the baseline algorithms for all values
of k. For example, NDCG@40 of DPWord2Vec is 0.9548,
which outperforms those of LSI, LDA, PMI, NGD, VSM,
and WordSimSE by 0.0173, 0.0494, 0.0559, 0.0472, 0.0155, and
0.0421, respectively. In Fig. 4b, DPWord2Vec outperforms
LSI, LDA, PMI, NGD, VSM, and WordSimSE by 32.3%,
120.9%, 60.4%, 57.4%, 24.2%, and 63.9% respectively in terms
of Spearman’s ρ. As the metrics are only shown in mean
values, we use Wilcoxon signed rank test [38] to investigate
whether there are significant differences between the per-
formance of DPWord2Vec and the baseline algorithms over
the 50 design patterns. For NDCG@40, the p-values when
comparing DPWord2Vec against the baseline algorithms are
all less than 3e-6. For Spearman’s ρ, the corresponding
p-values are all less than 1e-7. That means, DPWord2Vec
significantly outperforms the baseline algorithms in terms
of NDCG and Spearman’s rank correlation coefficient.

Among the baseline algorithms, LSI and VSM achieve
better performance and the other four have somewhat
comparable performance when considering NDCG and S-
pearman’s ρ. We note that LSI and VSM are all based on
the term × document matrix. It means that this way of
text representation is relatively suitable for this task. The
software specific method, WordSimSE, does not perform
quite well in the evaluation. A possible reason is that there
are differences between the software domain and the design
pattern domain, as design patterns are universal solutions
to recurring design problems and tend to be independent of
specific software entities.
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Fig. 4: Mean NDCG and Spearman’s ρ of each baseline
algorithm and DPWord2Vec on the 50 design patterns.

TABLE 2: The top 10 most related words to Record Set
design pattern of each algorithm

LSI LDA PMI NGD VSM WordSimSE DPWord2Vec
recordset querydef recordset recordset recordset recordset recordset

record recordset tado tado record row row
querydef clause querydef querydef row record record

tado statement jone row try value clause
clause row pivot pivot tado string value
row id statement record use execute string

statement jone row clone value try array
exit index record jone get id pivot
try record clone clause need server index

modify find clause statement array get querydef

To gain more intuitions of how the algorithms perform,
we give an example of ranked lists of these algorithms.
Table 2 shows the top ten most related words to the de-
sign pattern Record Set [39] ranked by each algorithm. For
DPWord2Vec, the ten words are all labelled as “related” or
“somewhat related” to the design pattern Record Set. The
top ten lists of the other algorithms all contain “unrelated”
words, which are shown in boldface. For example, for LDA,
PMI, and NGD, the top ten lists are contaminated by the
noise word “jone”. The word “jone” is a person name and
usually used as an example of username when discussing
database records in Stack Overflow (e.g., post #10050790).
However, “jone” is not semantically related to Record Set.
The top ten lists of LSI, VSM, and WordSimSE contain words
with too general or vague meanings, e.g., “try”, “get”, and
“use”.

5.2.4 Conclusion
DPWord2Vec significantly outperforms the baseline algo-
rithms on the dp-word similarity task in terms of NDCG
and Spearman’s ρ.
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5.3 RQ3: Does the usage of the new context windows
contribute to the performance of DPWord2Vec?

5.3.1 Motivation
In DPWord2Vec, we define new context windows for design
patterns and words respectively (Section 3.3). In this RQ, we
explore whether the usage of these context windows is an
advisable choice to associate design patterns with words.

5.3.2 Approach
To investigate the effects of the new context windows, we
replace them with the traditional fixed context windows
used in Word2Vec [11] and repeat the experiments on the
dp-word pair dataset. As the words and the design patterns
are independent in the corpus C, we use two strategies to
integrate words and design patterns into sequences, namely
the occurrence strategy and the shuffling strategy, so that they
can be handled by the traditional context windows.

The design pattern name occurrences strategy is to detect
the occurrences of design pattern names in the text as design
pattern tokens. This strategy is discussed in Section 3.3. The
shuffling strategy is leveraged in a recent study to align
words and APIs into a fixed context window [40]. Follow-
ing [40], for a document doc, the words in doc.Tokens and
the design patterns in doc.DPs are merged and randomly
shuffled for ten times to produce ten token sequences (con-
taining both words and design patterns).

Moreover, we also consider two other strategies which
represent design patterns in higher levels rather than token
level. They are from Doc2Vec [41] and Category enhanced
Word Embedding (CeWE) [42], respectively. The original
Doc2Vec aims to embed words and paragraphs or docu-
ments into vector spaces. Based on this model, we regard a
design pattern as a document-level term to learn its vector
representation. Specifically, the vector of each document in
Doc2Vec is substituted with the vector of the design pattern
which is contained in the document. Each design pattern
in VDP always keeps a unique vector even if it appears
in different documents. However, a document may con-
tain multiple design patterns. In this case, its word tokens
(doc.Tokens) are duplicated multiple times so that each
duplicate can be combined with a design pattern. Recently,
Nguyen et al. have used the same approach to produce the
vector representations of APIs and words [43].

Likewise, CeWE can learn the vector representations of
words as well as categories. A category indicates a label
or a classification of documents. A document may belong
to multiple categories. In this study, we regard each design
pattern as a category. In this way, design patterns are also
associated with words in document level and their vectors
can be obtained accordingly.

For all the strategies above, the parameters, including
the dimension of the vectors, the size of context window,
the initial learning rate, and the number of iterations, are the
same as in Section 3.4. As introduced in [42], the parameter
λ of CeWE is set to be 1/(2 · c + 1), where c is the size of
context window.

5.3.3 Results
The results are shown in Fig. 5a and Fig. 5b in terms of
NDCG and Spearman’s ρ, respectively. As shown in the

figures, we notice that the performance of DPWord2Vec with
the occurrence strategy (Occ.) is poor. For example, the Spear-
man’s ρ is 0.1315, even worse than all the baseline algo-
rithms in Section 5.2. DPWord2Vec with the shuffling strategy
(Shuff.), and the strategies of Doc2Vec and CeWE, achieve
comparable performance. Among them, the shuffling strategy
tends to be slightly better than the other two, but still
surpassed by DPWord2Vec with the new context windows.
According to Wilcoxon signed-rank test, the differences be-
tween the performance of the default DPWord2Vec and that
with the other strategies on NDCG@40 and Spearman’s ρ
are statistically significant (p-values are all less than 1e-5).

The drawback of the occurrence strategy is obvious. As the
design pattern names tend to be sparse in the text, it is hard
to mine the relationships between words and design pat-
terns adequately by leveraging the context windows. With
regard to the shuffling strategy, it may break the structure of
the natural language sentences and do harm to the capture
of semantic relationships. Moreover, the shuffling process
will significantly increase the size of the corpus (almost ten
times the original one) which results in extra computation
complexity.

The two document-level strategies, i.e., that from
Doc2Vec and CeWE, have similar mechanisms. The core is
that, in each document, the vectors of the design patterns
are integrated with the vectors of the surrounding words in
a context window to predict the central one. Hence, design
patterns can be deemed to be contained in the context of
words in some way. However, there exists no similar context
for design patterns and the design patterns in a document
are not predicted by the vectors of the involving words.
Compare to these strategies, the new context windows can
build stronger ties between design patterns and words.

5.3.4 Conclusion
DPWord2Vec with the new context windows can achieve
better results than the variants with the two serializing
strategies and the two document-level strategies. Thus, the
usage of the new context windows does contribute to the
performance of DPWord2Vec.

5.4 RQ4: Does the weighting strategy contribute to the
performance of DPWord2Vec?
5.4.1 Motivation
A weighting strategy is applied in the training phase of
DPWord2Vec (Section 3.4). To verify whether this strategy
is redundant, we set up this RQ.

5.4.2 Approach
We construct a variant of DPWord2Vec by removing the
weighting strategy. Then the performance of the variant is
compared against that of the default DPWord2Vec.

5.4.3 Results
The results are also presented in Fig. 5a and Fig. 5b
(W/OW.). In Fig. 5a, we observe that there are minor effects
on NDCG@k with small k after removing the weighting
strategy. The differences are obvious when k is larger than
five. When considering all the 40 words for each design
pattern, the values of NDCG@40 and Spearman’s ρ after
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Fig. 5: Mean NDCG and Spearman’s ρ of the variants of
DPWord2Vec on the 50 design patterns. Occ. = DPWord2Vec
with the occurrence strategy, Shuff. = DPWord2Vec with
the shuffling strategy, Doc2Vec = DPWord2Vec with the
strategy of Doc2Vec, CeWE = DPWord2Vec with the strategy
of CeWE, W/OW. = DPWord2Vec without the weighting
strategy.

removing are respectively 0.9471 and 0.5603, which are all
worse than the original ones, i.e., 0.9548 and 0.6273. As the
mean values seem to be close, we perform Wilcoxon signed-
rank test on NDCG@40 and Spearman’s ρ. The p-values
are respectively 2.72e-3 and 1.05e-5, which indicates the dif-
ferences are significant according to the p < 0.05 standard.
Moreover, we quantify the magnitude of the difference of
performance by analysing the effect size. Specifically, Co-
hen’s d [44] is calculated to measure the differences between
the means of the metrics with and without the weighting
strategy. The results for NDCG@40 and Spearman’s ρ are
0.2959 and 0.6087, which indicate a small-medium effect size
and a medium-large effect size [45], respectively. That mean-
s, the effect of the weighting strategy on the performance is
not negligible.

Based on the results, we note that DPWord2Vec achieves
better performance with the weighting strategy, especially
in terms of NDCG@k with k > 5. Without the weighting
strategy, the irrelevant but frequent words, such as “get”
and “case”, may be included in the top k list with a relatively
large k and ranked ahead of the ones which are labelled as
“related”. The weighting strategy could effectively weaken
the relationships between the design patterns and these
words, thus improves the performance.

5.4.4 Conclusion
DPWord2Vec can benefit from the weighting strategy for
measuring dp-word similarity.

6 APPLICATION I: DESIGN PATTERN TAG RECOM-
MENDATION

Many software information sites allow developers to label
their posts with tags, such as Stack Overflow, Ask Ubuntu,
and Freecode. Tags are short descriptions within a few
words long that are provided as metadata to classify, i-
dentify, and search software objects in these sites [46]. To
improve the quality of tags in software information sites, a
series of automatic tag recommendation methods have been
proposed to recommend appropriate tags for new posts
based on existing tag candidates [47], [48], [49], [50], [51].
In this application, we consider a design pattern specific tag
recommendation task that recommends design pattern tags
for design pattern relevant posts. That is, each recommend-
ed tag is a design pattern. By the recommendations, the syn-
onymous design pattern tags could be better avoided, which
results in better information organization and retrieval for
design pattern relevant posts.

6.1 Common Methods for Tag Recommendation
Actually, the design pattern tag recommendation task can
also be accomplished by general tag recommendation meth-
ods. We briefly introduce the methods for tag recommenda-
tion.

The main intuition of the existing tag recommendation
methods is to use the historical information of tag assign-
ments to recommend tags for new posts. Concretely, the
tag recommendation methods analyse the existing posts and
their tags in a software information site, and then infer the
relationship between a tag and a word or a whole post.
When a new post is coming, the same analysis process is
deployed on this post with the inferred results and each tag
is given a likelihood score. The top few tags with the highest
likelihood scores will be recommended. By restricting the
tags to design pattern tags, i.e., each tag represents a design
pattern, these methods are directly applied in the design
pattern tag recommendation task.

6.2 Design Pattern Tag Recommendation based on DP-
Word2Vec
In this part, we explain how to recommend design pattern
tags by leveraging DPWord2Vec.

With DPWord2Vec, design patterns and natural lan-
guages are associated. We can use these associations for
design pattern tag recommendation. As the content of a
post is a typical document that contains multiple words, to
recommend design pattern tags for a post, the relationship
between a design pattern and a document should be built
based on the word and design pattern vectors. Therefore,
we adopt the text semantic similarity [52] to measure the
relatedness between a design pattern and a set of words:

Sim(Words, dp) =
1

2
[

∑
w∈Words IDF (w) · Sim(w, dp)∑

w∈Words IDF (w)

+ max
w∈Words

Sim(w, dp)],

(8)

Authorized licensed use limited to: Carleton University. Downloaded on August 25,2020 at 05:14:05 UTC from IEEE Xplore.  Restrictions apply. 



0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3017336, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

where IDF (w) is the inverse document frequency14 value
of the word w in the corpus C and Sim(w, dp) is the vector
cosine similarity between w and the design pattern dp.

Generally, given a new design pattern relevant post,
there are three steps for design pattern tag recommendation:

1) Preprocess and tokenize the textual description of
the post following the procedures in Section 3.2.

2) For each design pattern tag in the tag candidate set,
calculate the similarity between the design pattern
and the post as Formula 8.

3) Rank the design pattern tags in descending order
according to their similarities and recommend the
top k design pattern tags.

6.3 Evaluation on Design Pattern Tag Recommenda-
tion
6.3.1 Motivation
In the evaluation, we try to explore whether the
DPWord2Vec-based method performs better than the com-
mon tag recommendation methods on the design pattern
tag recommendation task.

6.3.2 Approach
To evaluate the effectiveness of the DPWord2Vec-based
method, we compare it against the state-of-the-art tag rec-
ommendation algorithms on a real-world dataset. We detail
the strategies for evaluation, the constructed datasets, the
state-of-the-art tag recommendation algorithms, and the
leveraged metrics as follows.

Strategies. As to our knowledge, there are two soft-
ware information sites in which design patterns are broad-
ly discussed: Stack Overflow and Software Engineering15.
However, on one hand, the posts in Stack Overflow have
been leveraged by DPWord2Vec, it is inappropriate to use
them to evaluate DPWord2Vec again. On the other hand,
the amount of design pattern relevant posts in Software
Engineering is relatively small (less than 3,000, a dataset
of tag recommendation usually contains more than 13,000
posts [47], [48], [49], [50], [51]), it may be detrimental for
the other tag recommendation algorithms to train proper
models based on these posts. Therefore, the main strategy
for evaluation is to use the Software Engineering posts
for testing, and use the Stack Overflow posts to train tag
recommendation models.

Datasets. We download the Stack Overflow posts (from
Aug. 2008 to Dec. 2017) and the Software Engineering posts
(from Sep. 2010 to Mar. 2019) to construct the datasets.
Before that, the design pattern tags should be detected. At
first, we construct the regular expressions for the names
of each design pattern in VDP . Specifically, each design
pattern name is split into word(s), i.e., word1, word2, ...
, wordn, and the regular expression is written as “word1-
?word2...-?wordn(-pattern)?” (as words can only be separat-
ed by hyphens in tags). In this way, the tags like “active-
record”, “activerecord”, and “active-record-pattern” can all
be matched with the design pattern name “active record”.
Next, all the tags of these posts are extracted and a tag is

14. https://en.wikipedia.org/wiki/Tf-idf
15. https://softwareengineering.stackexchange.com/

mapped to a design pattern if it matches with a name of
the design pattern via the corresponding regular expression.
Then, we manually review each mapped tag if it has a
description in the corresponding software information site
to filter out false-positive tags that do not denote the design
patterns. At last, multiple tags are merged into one tag if
they are mapped to the same design pattern. Finally, 94 and
36 design pattern tags are detected in Stack Overflow and
Software Engineering, respectively. In this way, the design
pattern tags of the two sites are unified and these tags have
a one to one correspondence with the design patterns.

With the design pattern tags, we construct two datasets:
a dataset for training the common tag recommendation
models and a dataset for testing the common models and
the DPWord2Vec-based model. To build the training set,
we extract the Stack Overflow posts that contain the design
pattern tags but discard the tags appearing in less than 50
posts as they are less interesting and less useful to serve
as representative tags [47]. For the test set, we extract the
Software Engineering posts that contain the design pattern
tags but discard the tags not appearing in the training set
as they cannot be recommended by the common tag rec-
ommendation algorithms. Finally, the training set contains
176,427 Stack Overflow posts and 74 design pattern tags
which are used as candidates, the test set contains 2,986
Software Engineering posts and 35 design pattern tags16.
Like the training set here, the crowdsourced corpus, which
is for training the design pattern and word vectors, is also
constructed based on the Stack Overflow posts. It should
be noted that they are distinct. The crowdsourced corpus
consists of the posts with at least one design pattern name
appearing in the titles, bodies, or tags. It involves 210 design
patterns in total. In contrast, the training set only cares about
the posts containing design pattern tag(s). The latter can be
roughly covered by the former.

According to the settings above, the common tag rec-
ommendation models are trained on the Stack Overflow
posts containing the design pattern tags. Meanwhile, our
DPWord2Vec-based model relies on the design pattern and
word vectors learnt form the corpus C. In other words,
these models do not have a consistent training set. To
achieve unbiased comparisons, we conduct another part of
evaluation in which the corpus C is also used for training
the common tag recommendation models. Specifically, each
document in C is regarded as a post and each design pattern
in a document is regarded as a design pattern tag. Then, all
the 372 design patterns in VDP serve as candidates.

State of the Arts. To the best of our knowledge, there
are three common tag recommendation algorithms, TagMul-
Rec [49], EnTagRec++ [50], and FastTagRec [51], shown to
be the state-of-the-art on software information sites. Similar
to word embedding models, FastTagRec represents words
as vectors and recommends tags using neural network-
based classification. Given a new post, TagMulRec first
locates the posts that are semantically similar to it, and then
exploits multi-classification to produce a ranked tag list.
EnTagRec++ integrates the historical tag assignments and

16. The training and test sets, as well as the original
tag - design pattern mappings are available on http-
s://github.com/WoodenHeadoo/dpword2vec.
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TABLE 3: The results on the design pattern tag recommen-
dation task (Stack Overflow posts for training TagMulRec
and FastTagRec, the 74 design pattern tags in Stack Over-
flow as candidates)

Baseline TagMulRec FastTagRec DPWord2Vec
Recall@5 0.7369 0.5279 0.8167 0.8399

Precision@5 0.1618 0.1123 0.1786 0.1837
F1 − score@5 0.2625 0.1838 0.2901 0.2984
Recall@10 0.7369 0.6954 0.8658 0.9230

Precision@10 0.0809 0.0749 0.0952 0.1017
F1 − score@10 0.1448 0.1345 0.1704 0.1820

the information of users for tag recommendation. However,
EnTagRec++ cannot be applied here as the training set and
the test set are from different sites which do not share the
same group of users. Therefore, we only take TagMulRec
and FastTagRec for comparisons.

In addition, with the concern that the design pattern
names may appear in the posts explicitly, we deploy a
baseline method which leverages the occurrences of design
patterns. Specifically, the design pattern names of each
design pattern in the tag candidate set are searched in
the Software Engineering posts (the test set) by using the
regular expressions (as discussed in Section 3.1). A post
is supposed to contain a design pattern tag if one of the
design pattern names appears in the title or body of the
post. Since the common tag recommendation methods only
provide likelihood scores for ranking the candidate tags, for
this baseline method, the design pattern tags are also sorted
according to the numbers of design pattern occurrences for
comparability. If there are no or not enough design pattern
occurrences found in the post, the design pattern tags are
sorted in alphabetical order.

Metrics. The recommending strategy of all the algo-
rithms above is to provide a rank list of candidate design
pattern tags and recommend the top k ones. To evaluate
the recommendations, we exploit three metrics, Recall@k,
Precision@k, and F1 − score@k, which are usually used
to evaluate tag recommendation systems on software infor-
mation sites [49], [51]. In particular, the sample-wise metrics
are calculated as

Recall@ki =
|RankListki ∩ Tagi|

|Tagi|
(9)

and

Precision@ki =
|RankListki ∩ Tagi|

k
, (10)

where Tagi and RankListki are the set of real design pattern
tags and the set of top k recommended design pattern tags
for the ith posts in the test set, respectively. By combining
Recall@ki and Precision@ki,

F1− score@ki =
2 ·Recall@ki · Precision@ki
Recall@ki + Precision@ki

. (11)

Then the set-wise metrics Recall@k, Precision@k, and
F1 − score@k are respectively the average values of the
sample-wise metrics in Formulas 9, 10, and 11 over all the
posts in the test set. According to the literature [47], [48],
[49], [50], [51], k is set to 5 and 10.

TABLE 4: The results on the design pattern tag recommen-
dation task (corpus C for training TagMulRec and FastTa-
gRec, all the 372 design patterns as candidates)

Baseline TagMulRec FastTagRec DPWord2Vec
Recall@5 0.7358 0.5559 0.8322 0.8399

Precision@5 0.1615 0.1183 0.1826 0.1837
F1 − score@5 0.2620 0.1936 0.2963 0.2984
Recall@10 0.7369 0.7040 0.8895 0.9224

Precision@10 0.0809 0.0758 0.0978 0.1017
F1 − score@10 0.1448 0.1361 0.1750 0.1819

6.3.3 Results
As introduced before, the evaluation contains two parts.
In the first part, the Stack Overflow posts with the design
pattern tags are used for training the TagMulRec model
and the FastTagRec model, the Software Engineering posts
are used for testing all the models. The tag candidate set
for recommendation includes the 74 design pattern tags
appearing in these Stack Overflow posts. The results are
shown in Table 3. The best result on each metric is shown
in boldface. As shown in the table, the DPWord2Vec-based
method achieves much better performance than TagMulRec,
i.e., over 30% improvements on all metrics. When com-
paring against FastTagRec, the improvements are not so
apparent, i.e., all within 10%. We perform Wilcoxon signed-
rank test on sample-wise metrics of all the 2,986 posts and
the p-values on the six metrics are all less than 0.0025 when
comparing DPWord2Vec against FastTagRec. That means,
the DPWord2Vec-based method significantly outperforms
FastTagRec in statistics.

In the second part, we train the TagMulRec model and
the FastTagRec model using the corpus C and test all the
models with the Software Engineering posts. The candidates
are changed to all the 372 design patterns in VDP . Table 4
presents the evaluation results. From the table, we notice
that the performance of TagMulRec and FastTagRec im-
proves on all the metrics contrast to the previous ones, but is
still not as good as that of the DPWord2Vec-based method.
The DPWord2Vec-based method is relatively stable as the
results are almost unchange when involving more design
pattern tag candidates. According to the results of Wilcoxon
signed-rank test, the differences on Recall@5, Precision@5,
and F1 − score@5 are not significant, i.e., the p-values are
0.22, 0.44, and 0.19, respectively. However, the DPWord2Vec-
based method still significantly outperforms FastTagRec
when recommending ten design pattern tags, i.e., p-values
on Recall@10, Precision@10, and F1 − score@10 are
all less than 1e-6. It implies that the DPWord2Vec-based
method benefits from not only a comprehensive corpus but
also an appropriate algorithmic model.

As shown in Tables 3 and 4, it is surprising that the
performance of the baseline method is better than that
of TagMulRec on all metrics, although surpassed by that
of FastTagRec and the DPWord2Vec-based method. That
means, to detect the design pattern occurrences is also
effective for design pattern tag recommendation to some
degree. From the perspective of Recall, the names of a part
of the design patterns serving as tags appear in the text
of the posts as well. But it does not achieve a quite ideal
coverage. From the perspective of Precision, an occurrence
of a design pattern name in a post does not necessarily mean
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that it is also a tag of the post, as the design pattern may be
not the main focus or the mentioned design pattern name
is ambiguous. Comparing Table 4 against Table 3, we notice
that the baseline method has minor changes in performance
when enlarging the tag candidate set. The reason is that the
newly involved design patterns appear rarely in the posts.

Generally, the performance of the DPWord2Vec-based
method is relatively close to that of FastTagRec. Never-
theless, there are some advantages of our method. On the
one hand, the DPWord2Vec-based method is more efficient
than FastTagRec. As DPWord2Vec is based on the GloVe
model, the time complexity for calculating and updating
the gradients is usually O(d(|C|1/α + |DPTags|1/β)) for
some α, β > 1 [13], where d denotes the dimension of the
vectors, |C| denotes the total number of word tokens, and
|DPTags| denotes the total number of design pattern tag
occurrences in the training set. As |DPTags| ought to be
much smaller than |C|, the time complexity can be written
as O(d · |C|1/α). For FastTagRec, the time complexity is
O(d · |C| · log(|DPCands|)) [51], where |DPCands| denotes
the size of the design pattern tag candidate set. Hence,
the DPWord2Vec-based method is more scalable when in-
volving more posts for training (|C| gets larger). Moreover,
enlarging the tag candidate set will make the model of
FastTagRec more complex, but not explicitly increase the
model complexity of the DPWord2Vec-based method. On
the other hand, the DPWord2Vec-based method is more
understandable. FastTagRec is essentially a classification
model. It regards each design pattern tag candidate as a
class and recommends tags by training the classifier. How-
ever, the classifier is somewhat a black-box for the users.
In contrast, DPWord2Vec represents the elements of the
natural language and the tag candidates as vectors, and
ranks the tags according to the similarities between them
and the post. It tends to be more intuitive and acceptant for
humans. Moreover, by exploring the sentences or phrases
with high similarities to the tags, the users could understand
the motivation of the recommendation better.

6.3.4 Conclusion
In the design pattern tag recommendation task, the
DPWord2Vec-based method performs better than TagMul-
Rec and FastTagRec in terms of Recall, Precision, and F1-
score, even when they are provided with the same data for
training. This shows that the learned word and design pat-
tern vectors could better express the relationships between
a post and a design pattern.

7 APPLICATION II: DESIGN PATTERN SELECTION

When developing a software (sub)system, the developer(s)
may be willing to leverage design patterns to facilitate
the development process. This is called a design problem.
However, there exist a large number of design patterns [7]
and determining the applicability of these design patterns
heavily depends on the experience of a developer [53]. It
is usually difficult to find the right design pattern(s) for a
given design problem especially for novice developers [8].
To resolve this problem, several studies focus on selecting
appropriate design pattern(s) automatically based on the
textual description of the design problem [8], [54]. The

textual description is a short text that may depict the main
features, requirements of the (sub)system, or how it works.

In this application, we attempt to solve this design
pattern selection problem by leveraging the learnt word and
design pattern vectors. Comparing to the previous task, i.e.,
design pattern tag recommendation, design pattern selec-
tion is usually a more challengeable task. In the previous
task, a post may involve explicit characteristics of design
patterns, e.g., design pattern names. However, in this task,
the description of the design problem cannot contain such
information as the suitable design pattern(s) is assumed
to be unknown. The semantic meaning of the description
should be explored and it should match the application
scenarios of the selected design pattern(s).

7.1 General Method of Design Pattern Selection

In this part, we introduce the general framework of design
pattern selection in the existing studies.

The existing design pattern selection approaches usually
use the problem definition of a design pattern as the oracle
for design pattern selection [8], [54]. The problem definition
describes what problems the design pattern solves and
where the design pattern can be applied. For example, in
the GoF book, the problem definition contains the intent,
motivation, and applicability sections [8]. Given a design
problem description and a collection of design patterns, the
design pattern selection procedure can be detailed in the
following three phases [8], [54].

Vectorizing the Documents. The documents, i.e., the
design problem description and the problem definitions of
design patterns, are preprocessed and vectorized by lever-
aging the vector space model, in which each document is
presented as a feature vector and each feature indicates the
weight of a word in the document.

Determining the Design Pattern Class. This phase aims
to preliminarily find a set of design patterns that are likely to
be right for the design problem. It is motivated by the expert
classification of design patterns. For example, the 23 design
patterns in GoF are divided into three classes, i.e., Creational
Patterns, Structural Patterns, and Behavioral Patterns [2],
and each class focuses on one type of design problems.
Therefore, the goal is to determine the most suitable design
pattern class for the design problem. With this phase, the
design pattern selection process can leverage the expert
classification information besides the similarity between the
design problem and the oracle of a design pattern. Hence,
this phase is a reinforcement for the similarity-based selec-
tion and the accuracy is expected to be improved.

To determine the design pattern class, text categorization
methods are applied to these vectorized text documents.
For example, [8] leverages supervised learning methods
to build a classifier for textual descriptions based on the
expert classes of design patterns. Then the design problem
description is classified into a class by the classifier and the
design patterns in this class are delivered to the next phase.
Similarly, [54] uses clustering methods to group the prob-
lem definitions of design patterns and the design problem
description into multiple clusters. This partition may be not
consistent with the expert classification, but the numbers
of classes (or clusters) in the two partitions are equal. The
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design patterns whose problem definitions are in the same
cluster with the design problem description are retained for
further selection.

Suggesting the Design Pattern(s). With the determined
class of design patterns, the appropriate design pattern(s)
is further suggested based on the similarities between the
design problem description and the problem definitions of
design patterns. Concretely, the ith design pattern in the
determined class is suggested if{

|Si| > θ1
|Si − Smax| ≤ θ2

, (12)

where Si is the similarity between the problem definition of
the ith design pattern and the design problem description,
Smax is the maximum among the similarity Sj correspond-
ing to each design pattern in the determined class, and θ1
and θ2 are thresholds that should be specified manually. We
note that more than one design patterns may be selected
finally. The result relies on the values of the thresholds.

7.2 Refined Design Pattern Selection Method based on
DPWord2Vec

With the learnt design pattern and word vectors, we show
how to refine the existing design pattern selection method.

As to the depictions above, the design pattern selection
method depends on the expert classification of design pat-
terns. However, this classification may involve inconsisten-
cies and anomalies [8]. In other words, the classification
may not be fully reflected by the problem definitions of
the design patterns. As a result, the determined class may
be unreliable. Therefore, we modify the second phase, i.e.,
Determining the Design Pattern Class, by leveraging the
learned word and design pattern vectors to refine the design
pattern selection method.

There are three steps for the modified phase:

1) Preprocess and tokenize the design problem de-
scription following the procedures in Section 3.2.

2) For each design pattern candidate, calculate the sim-
ilarity between the design pattern and the design
problem description as Formula 8.

3) Perform k-means clustering [55] on the design pat-
tern candidates to group them into the “relevant”
class and “irrelevant” class based on their similari-
ties with the design problem description. The initial
centroids of the two clusters are the maximum and
minimum of the similarities, respectively. The “rel-
evant” class is considered as the candidate design
pattern class for the design problem.

This new phase doesn’t use any information of the
expert classification but leverages the relatedness between
the design problem and design patterns inferred from the
word and design pattern vectors. The design patterns with
very weak relatedness to the design problem are unlikely
to be the appropriate ones and eliminated, the rests are
retained for further selection. Except for the second phase,
the first and third phases of the method keep unchanged.

7.3 Evaluation of the DPWord2Vec-based Method

7.3.1 Motivation
To investigate whether the refined method based on DP-
Word2Vec is effective, we set up this evaluation.

7.3.2 Approach
We compare the refined method based on DPWord2Vec
against the existing ones on design pattern selection bench-
marks. In the following parts, we depict the benchmarks,
the methods for comparison, the evaluation metrics, and the
settings of all the methods, respectively.

Benchmarks. The benchmarks we use are the same as
those used in [54], which involve 80 design problems and
three design pattern collections, namely GoF [2], Securi-
ty [56], and Douglass [57]. The GoF collection includes
23 object-oriented design patterns which are divided into
three classes. The Security collection includes 46 design
patterns used in integrating security systems and presented
in eight classes. There are 34 real-time system relevant
design patterns in the Douglass collection and they have
been divided into five classes. The numbers of design prob-
lems corresponding to the three collections are 30, 30, and
20, respectively. For each design problem, only one design
pattern in the collection is regarded as correct17.

Following [54] and [8], for each collection, the evaluation
is deployed independently. Only the design patterns in
this collection are considered as the original candidates for
selection.

State of the Arts. As to our knowledge, there are two
studies, [54] and [8], that propose completely automatic
design pattern selection methods based on publicly avail-
able textual descriptions of design patterns. The methods
in these two studies all follow the three-phases framework
mentioned above. In this evaluation, we take them for
comparison.

Metrics. Following [54] and [8], the design pattern selec-
tion methods are evaluated by the RCDDP (Ratio of Correct
Detection of Design Pattern) metric, which is calculated as

RCDDP =
1

N

N∑
i=1

|SDPi ∩ CDPi|
|SDPi|

, (13)

where N is the number of design problems for the de-
sign pattern collection, CDPi is the set of correct design
pattern(s) to solve the ith design problem (contains only
one design pattern in the dataset), and SDPi is the set of
suggested design pattern(s) by the design pattern selection
method.

As to the definition above, the RCDDP metric depends
on the values of the thresholds θ1 and θ2, as they will
determine which design pattern(s) is finally suggested, i.e.,
SDPi. It may make the comparisons complicated, since the
appropriate values of the thresholds for different design
pattern selection methods may be not unified. Actually, our
refined method only modifies the phase of determining the
design pattern class, but does not deal with the settings of
the thresholds. Without losing the reasonability, we leverage

17. The 80 design problems and the correspond-
ing correct design patterns can be found on http-
s://github.com/WoodenHeadoo/dpword2vec.
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another metric for evaluation, namely MRR (Mean Recipro-
cal Rank) [58], which is not affected by the thresholds. MRR
is a standard evaluation metric in information retrieval and
used in several software engineering related studies [59].
Specifically,

MRR =
1

N

N∑
i=1

1

rankic
, (14)

where rankic denotes the position of the correct design
pattern to the ith design problem in the rank based on the
similarities in the third phase. The expression 1/rankic is
called as reciprocal rank. If the correct design pattern is
eliminated in the second phase, then the reciprocal rank is
0. As to the definition, the value of MRR is low if most
of the correct design patterns are omitted; and high if the
irrelevant design patterns ranked before the correct ones are
eliminated. Therefore, MRR is able to evaluate the candidate
design pattern class produced in the second phase.

Settings of the Methods. The methods in [54] and [8]
are more like frameworks rather than concrete algorithms.
That means, the concrete algorithms for each step should
be specified according to the realities. Therefore, we unify
the settings for all methods and leverage the moderate ones
that perform best in the most cases according to the results
in [54] and [8].

Specifically, the TF-IDF technique is used for the vector-
ization of the documents in the first phase. In the second
phase, the improved global feature selection scheme [60]
is used to reduce the dimension of the document vectors.
The support vector machine [55] classification algorithm
and fuzzy c-means clustering [61] algorithm are leveraged
to determine the candidate design pattern class for the
method in [8] and the method in [54], respectively. The
number of classes (clusters) is consistent with that of the
expert classification in each design pattern collection. In the
third phase, the cosine similarity is applied to measure the
correlation between the vectorized problem definitions of
design patterns and design problem descriptions.

For the refined method, the TF-IDF technique and cosine
similarity are also used in the first and third phases, respec-
tively. But the second phase is replaced by the modified one.

According to [54] and [8], the effective values of the
thresholds and the number of features (dimension of the
document vectors after feature selection) rely on the design
pattern collections. Hence, we attempt to find the most
suitable settings for each collection and report the optimal
results. For the methods in [54] and [8], we try various
feature numbers from 50 to the vocabulary size at an interval
of 50 and the best one in terms of MRR is recorded. Then,
for each method, we find the highest value of RCDDP by
traversing all the combinations of θ1 and θ2 from the range
{0, 0.1, 0.2,..., 1.0} and the range {0, 0.01, 0.02,..., 0.10} [8],
respectively.

7.3.3 Results

The metric values and the corresponding parameter settings
are displayed in Table 5. As shown in the table, the refined
method achieves the best performance on all three collec-
tions. Averaging across the three collections, the refined
method outperforms the method in [54] (M1) by 6.3% and

TABLE 5: The results and parameter settings on the design
pattern selection task

GoF
Algorithm RCDDP MRR (θ1, θ2) # Features EER

M1 0.5333 0.6368 (0, 0) 950 16.67%
M2 0.3333 0.3417 (0, 0) 950 63.33%

Refined 0.5667 0.6806 (0, 0) - 13.33%
Security

Algorithm RCDDP MRR (θ1, θ2) # Features EER
M1 0.8000 0.8278 (0, 0) 900 13.33%
M2 0.4333 0.4500 (0, 0) 200 53.33%

Refined 0.8667 0.9111 (0, 0) - 3.33%
Douglass

Algorithm RCDDP MRR (θ1, θ2) # Features EER
M1 0.6000 0.6917 (0, 0) 600 15.00%
M2 0.4583 0.5542 (0, 0.08) 650 30.00%

Refined 0.6225 0.7058 (0, 0.1) - 5.00%
M1 = the method in [54], M2 = the method in [8], Refined = the
refined method based on DPWord2Vec

6.5% in terms of RCDDP and MRR, respectively. The per-
formance of the method in [8] (M2) is overall unsatisfactory.
For example, the refined method improves M2 by over 70%
in terms of the mean value of MRR.

The possible reason for the bad results of M2 is that too
many correct design patterns are eliminated when deter-
mining the design pattern class. To show this observation,
for each method on each collection, we calculate the ratio
of cases in which the correct design pattern is eliminated
after the second phase. The results are also shown in Ta-
ble 5, namely Erroneously Eliminating Ratio (EER). From
the results, we notice that the EERs of M2 are very high for
all the collections. For example, the EER of M2 is 63.33% for
the GoF collection. That means, the correct design patterns
of the 19 among the 30 design problems are mistakenly
eliminated. Meanwhile, the EERs of the refined method are
the lowest among all the methods on the three collections.

Notably, the performance of the refined method is not
much better than that of M1 on the Douglass collection.
The MRR values are respectively 0.7058 and 0.6917, which
are quite similar. Generally, the quality of the learnt design
pattern vectors relies on the design pattern relevant docu-
ments. However, in the corpus C, the number of documents
relevant to each design pattern in the Douglass collection
seems to be too few. Counting all the 20 design patterns
mentioned in the benchmarks, nine of them relate to less
than 10 documents each, eight design patterns occupy 10
to 49 documents each, and each of the other three ones
involves 50 to 73 documents. It could be the reason for the
nonsignificant improvement in the Douglass collection.

The main difference among M1, M2, and the refined
method is the way of determining the candidate design pat-
tern class. M2 chooses one class of the expert classification
as the candidate class but this way does not work well. M1
does not completely follow the expert classification but use
it during the feature selection. The performance of M1 is
much better than that of M2, but not as good as that of the
refined method. It implies that the way by leveraging the
learnt word and design pattern vectors is more appropriate
to find a candidate set of design patterns than the way by
using the expert classification.
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7.3.4 Conclusion
The refined method based on DPWord2Vec is superior to
the methods in [54] and [8] on the benchmarks. Therefore,
DPWord2Vec contributes to accomplish the task of design
pattern selection.

8 THREATS TO VALIDITY

8.1 Internal validity
There are several threats to internal validity of our work.

First, the size of the corpus may restrict the effectiveness
of DPWord2Vec. The corpus in this paper is relatively small
comparing with those used in other word embedding meth-
ods [11], [13]. This may influence the quality of the learnt
word and design pattern vectors. However, we believe
this problem would be alleviated as more design pattern
relevant documents could be extracted in the coming future
due to the popularity of programming forums. Second, only
the default values of the parameters are used to build the
word and design pattern vectors. However, the empirical
study shows that the performance of DPWord2Vec is not
very sensitive to the settings of the main parameters, i.e.,
the context window size for words and the dimension of
vectors. Third, the human judgment process of the dp-word
pairs may contain uncertainties, since it may be not easy
to judge whether a design pattern and a word is related
sometimes. However, such procedures are common practice
in similarity tasks of various domains [18], [23], [24], [25].
We try to mitigate the uncertainties by involving a new
label, i.e., “somewhat related”. Moreover, the Fleiss’ Kap-
pa measure shows that the annotators reach a substantial
agreement. Finally, the way of determining design pattern
relevant posts for constructing the crowdsourced corpus is
not completely precise. This factor is in the scope of our
previous study. We have performed a validation to ensure
the reliability of the results [12].

8.2 External Validity
The threats to external validity relate to the generalization
of DPWord2Vec. We sample 2,000 dp-word pairs to evaluate
DPWord2Vec in terms of dp-word similarity and employ
two applications to evaluate DPWord2Vec in terms of design
pattern - words (document) similarity. It is unclear whether
DPWord2Vec still works well on other tasks. More datasets
or applications will be investigated to reduce this threat in
the future.

9 RELATED WORK

9.1 Word Embedding for Software Artifacts
Similar to our work, numbers of studies leverage word
embedding methods on software artifacts to aid in software
engineering relevant tasks.

Some studies focus on mapping APIs into vector space.
Nguyen et al. propose API2Vec that learns API vectors
based on API usage sequences extracted from code corpo-
ra [62]. Similarly, Li et al. embed natural language words
and APIs at the same time by leveraging both API se-
quences and the method comments [40]. To establish API
mappings between third-party libraries, Chen et al. present

an unsupervised deep learning-based approach to map both
API usage semantics and API description semantics into
vectors [63].

Meanwhile, some studies aim to learn the representa-
tions of programs. Alon et al. produce general represen-
tations of programs based on the paths in abstract syntax
trees [64]. Henkel et al. represent programs as abstractions
of traces obtained from symbolic execution and learn the
vectors of the abstractions using word embedding [22].
Piech et al. introduce a neural network method to learn the
feature embedding of a whole program and give automatic
feedback based on the representation [65].

Moreover, some studies directly use word embedding
methods on software-related documents to support some
other tasks. Ye et al. train the word embeddings on API rel-
evant documents and aggregate them to estimate semantic
similarities between documents [59]. Calefato et al. exploit
word embedding on Stack Overflow posts to help to analyse
the sentiments of developers [66]. Guo et al. attempt to
generate trace links among software artifacts by utilizing
word embedding and recurrent neural network trained on
clean text from related domain documents [67].

Different from these studies, our work concentrates on
associating natural language words and design patterns by
embedding them into one vector space. To the best of our
knowledge, no previous studies have ever considered the
general relatedness between words and design patterns.

9.2 Tag Recommendation in Software Information Sites
In the first application, we apply DPWord2Vec to the design
pattern tag recommendation task. There exist a series of tag
recommendation methods specified for software informa-
tion sites.

To automatically recommend tags in software infor-
mation sites, Xia et al. propose TagCombine which ranks
each tag candidate by integrating three ranking componen-
t [47]. After that, EnTagRec is proposed and outperforms
TagCombine on four software information sites in terms
of Recall [48]. To adopt tag recommendation methods in
large-scale software information sites, Zhou et al. propose
a more scalable approach called TagMulRec [49]. TagMul-
Rec outperforms EnTagRec in terms of Precision and F1-
score on four software information sites. Then Wang et al.
enhance EnTagRec to a new version, namely EnTagRec++,
by leveraging the information of users of software informa-
tion sites [50]. EnTagRec++ improves TagCombine by over
10% on five software information sites in terms of Recall.
Recently, Liu et al. propose FastTagRec which recommends
tags using neural network-based classification [51]. An eval-
uation on ten software information sites shows FastTagRec
is more accurate than TagMulRec.

Most of these methods can also be used in the de-
sign pattern tag recommendation task. In the evaluation,
the DPWord2Vec-based design pattern tag recommendation
method is compared against the state-of-the-art ones, i.e.,
FastTagRec and TagMulRec, to show its effectiveness.

9.3 Design Pattern Selection based on Text
The related work for the second application is about de-
sign pattern selection. We focus on the methods leveraging
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textual descriptions here. These works can be roughly cate-
gorized into two types.

The first type is based on design pattern use cases and
recommend design patterns by exploring the most similar
use cases to the current design problem. Gomes et al.
propose a case-based reasoning approach for design pattern
selection and index cases by using WordNet [68]. Similarly,
Muangon et al. present a design pattern searching model by
combining case-based reasoning and formal concept anal-
ysis techniques [10]. Bouassida et al. integrate case search
and questionnaire strategy to create an interactive design
pattern selection method [69]. These approaches are based
on the assumption that there exists a case library. However,
few such libraries are publicly available.

The second type is based on general textual descriptions
of design patterns. Palma et al. provide an expert system for
design pattern recommendation and parses design pattern
descriptions to formulate questionnaires for designers [9].
In [70], Pavlič et al. document the knowledge of design
patterns by building an ontology for design pattern advise-
ment. The studies [54] and [8] automate the process and only
utilize the original descriptions in design pattern books for
design pattern selection.

In this application, we follow the automatic design
pattern selection framework in [54] and [8] but refine the
design pattern class determining phase by DPWord2Vec.
The refined method outperforms the methods in [54] and
[8] on the benchmarks.

10 CONCLUSION

In this work, we propose DPWord2Vec, a framework that
maps both natural language words and design patterns into
one vector space. With the word and design pattern vectors,
each design pattern is associated with English natural lan-
guage. DPWord2Vec leverages the word embedding method
to learn the word and design pattern vector representations
based on two built corpora with our redefined context win-
dows. An evaluation on a dp-word pair dataset shows that
DPWord2Vec is more effective than the baseline methods
in measuring the dp-word similarity. Moreover, two design
pattern relevant applications are leveraged to investigate
the usefulness of DPWord2Vec. The experimental results
indicate that DPWord2Vec can outperform the state-of-the-
art algorithms on the specific tasks.

In the future, on one hand, we will extract more design
pattern relevant documents from other sources to enrich
the corpora; on the other hand, we will attempt to ap-
ply DPWord2Vec to more design pattern relevant tasks.
Moreover, it is also worth investigating the effectiveness of
DPWord2Vec on the corpora of non-English languages.
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